mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
Fix agent executor
This commit is contained in:
parent
59ce047aea
commit
e0731ba353
4 changed files with 62 additions and 16 deletions
|
@ -10,8 +10,6 @@ from typing import Optional
|
|||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.deployment_types import URL
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingMetric(BaseModel):
|
||||
|
|
|
@ -26,6 +26,7 @@ from llama_stack.apis.memory_banks import * # noqa: F403
|
|||
from llama_stack.apis.safety import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
from llama_stack.providers.utils.memory.vector_store import concat_interleaved_content
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .persistence import AgentPersistence
|
||||
|
@ -387,7 +388,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
if rag_context:
|
||||
last_message = input_messages[-1]
|
||||
last_message.context = "\n".join(rag_context)
|
||||
last_message.context = rag_context
|
||||
|
||||
elif attachments and AgentTool.code_interpreter.value in enabled_tools:
|
||||
urls = [a.content for a in attachments if isinstance(a.content, URL)]
|
||||
|
@ -687,7 +688,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
async def _retrieve_context(
|
||||
self, session_id: str, messages: List[Message], attachments: List[Attachment]
|
||||
) -> Tuple[Optional[List[str]], Optional[List[int]]]: # (rag_context, bank_ids)
|
||||
) -> Tuple[Optional[InterleavedContent], List[int]]: # (rag_context, bank_ids)
|
||||
bank_ids = []
|
||||
|
||||
memory = self._memory_tool_definition()
|
||||
|
@ -755,11 +756,16 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
break
|
||||
picked.append(f"id:{c.document_id}; content:{c.content}")
|
||||
|
||||
return [
|
||||
"Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
|
||||
*picked,
|
||||
"\n=== END-RETRIEVED-CONTEXT ===\n",
|
||||
], bank_ids
|
||||
return (
|
||||
concat_interleaved_content(
|
||||
[
|
||||
"Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
|
||||
*picked,
|
||||
"\n=== END-RETRIEVED-CONTEXT ===\n",
|
||||
]
|
||||
),
|
||||
bank_ids,
|
||||
)
|
||||
|
||||
def _get_tools(self) -> List[ToolDefinition]:
|
||||
ret = []
|
||||
|
|
|
@ -9,7 +9,7 @@ import tempfile
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.models import ModelInput
|
||||
from llama_stack.apis.models import ModelInput, ModelType
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.inline.agents.meta_reference import (
|
||||
|
@ -67,22 +67,42 @@ async def agents_stack(request, inference_model, safety_shield):
|
|||
for key in ["inference", "safety", "memory", "agents"]:
|
||||
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||
providers[key] = fixture.providers
|
||||
if key == "inference":
|
||||
providers[key].append(
|
||||
Provider(
|
||||
provider_id="agents_memory_provider",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config={},
|
||||
)
|
||||
)
|
||||
if fixture.provider_data:
|
||||
provider_data.update(fixture.provider_data)
|
||||
|
||||
inference_models = (
|
||||
inference_model if isinstance(inference_model, list) else [inference_model]
|
||||
)
|
||||
models = [
|
||||
ModelInput(
|
||||
model_id=model,
|
||||
model_type=ModelType.llm,
|
||||
provider_id=providers["inference"][0].provider_id,
|
||||
)
|
||||
for model in inference_models
|
||||
]
|
||||
models.append(
|
||||
ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
model_type=ModelType.embedding,
|
||||
provider_id="agents_memory_provider",
|
||||
metadata={"embedding_dimension": 384},
|
||||
)
|
||||
)
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.agents, Api.inference, Api.safety, Api.memory],
|
||||
providers,
|
||||
provider_data,
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=model,
|
||||
)
|
||||
for model in inference_models
|
||||
],
|
||||
models=models,
|
||||
shields=[safety_shield] if safety_shield else [],
|
||||
)
|
||||
return test_stack
|
||||
|
|
|
@ -21,6 +21,7 @@ from pypdf import PdfReader
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent, TextContentItem
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.apis.memory_banks import VectorMemoryBank
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
@ -88,6 +89,26 @@ def content_from_data(data_url: str) -> str:
|
|||
return ""
|
||||
|
||||
|
||||
def concat_interleaved_content(content: List[InterleavedContent]) -> InterleavedContent:
|
||||
"""concatenate interleaved content into a single list. ensure that 'str's are converted to TextContentItem when in a list"""
|
||||
|
||||
ret = []
|
||||
|
||||
def _process(c):
|
||||
if isinstance(c, str):
|
||||
ret.append(TextContentItem(text=c))
|
||||
elif isinstance(c, list):
|
||||
for item in c:
|
||||
_process(item)
|
||||
else:
|
||||
ret.append(c)
|
||||
|
||||
for c in content:
|
||||
_process(c)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
||||
if isinstance(doc.content, URL):
|
||||
if doc.content.uri.startswith("data:"):
|
||||
|
@ -125,6 +146,7 @@ def make_overlapped_chunks(
|
|||
for i in range(0, len(tokens), window_len - overlap_len):
|
||||
toks = tokens[i : i + window_len]
|
||||
chunk = tokenizer.decode(toks)
|
||||
# chunk is a string
|
||||
chunks.append(
|
||||
Chunk(content=chunk, token_count=len(toks), document_id=document_id)
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue