feat: Add responses and safety impl with extra body

This commit is contained in:
Swapna Lekkala 2025-10-10 07:12:51 -07:00
parent 548ccff368
commit e09401805f
15 changed files with 877 additions and 9 deletions

View file

@ -131,8 +131,14 @@ class OpenAIResponseOutputMessageContentOutputText(BaseModel):
annotations: list[OpenAIResponseAnnotations] = Field(default_factory=list)
@json_schema_type
class OpenAIResponseContentPartRefusal(BaseModel):
type: Literal["refusal"] = "refusal"
refusal: str
OpenAIResponseOutputMessageContent = Annotated[
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageContentOutputText | OpenAIResponseContentPartRefusal,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMessageContent")

View file

@ -88,6 +88,7 @@ class MetaReferenceAgentsImpl(Agents):
tool_runtime_api=self.tool_runtime_api,
responses_store=self.responses_store,
vector_io_api=self.vector_io_api,
safety_api=self.safety_api,
)
async def create_agent(

View file

@ -15,20 +15,25 @@ from llama_stack.apis.agents.openai_responses import (
ListOpenAIResponseInputItem,
ListOpenAIResponseObject,
OpenAIDeleteResponseObject,
OpenAIResponseContentPartRefusal,
OpenAIResponseInput,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseMessage,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseText,
OpenAIResponseTextFormat,
)
from llama_stack.apis.inference import (
Inference,
Message,
OpenAIMessageParam,
OpenAISystemMessageParam,
)
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.log import get_logger
@ -37,12 +42,16 @@ from llama_stack.providers.utils.responses.responses_store import (
_OpenAIResponseObjectWithInputAndMessages,
)
from ..safety import SafetyException
from .streaming import StreamingResponseOrchestrator
from .tool_executor import ToolExecutor
from .types import ChatCompletionContext, ToolContext
from .utils import (
convert_openai_to_inference_messages,
convert_response_input_to_chat_messages,
convert_response_text_to_chat_response_format,
extract_shield_ids,
run_multiple_shields,
)
logger = get_logger(name=__name__, category="openai_responses")
@ -61,12 +70,14 @@ class OpenAIResponsesImpl:
tool_runtime_api: ToolRuntime,
responses_store: ResponsesStore,
vector_io_api: VectorIO, # VectorIO
safety_api: Safety,
):
self.inference_api = inference_api
self.tool_groups_api = tool_groups_api
self.tool_runtime_api = tool_runtime_api
self.responses_store = responses_store
self.vector_io_api = vector_io_api
self.safety_api = safety_api
self.tool_executor = ToolExecutor(
tool_groups_api=tool_groups_api,
tool_runtime_api=tool_runtime_api,
@ -217,9 +228,7 @@ class OpenAIResponsesImpl:
stream = bool(stream)
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
# Shields parameter received via extra_body - not yet implemented
if shields is not None:
raise NotImplementedError("Shields parameter is not yet implemented in the meta-reference provider")
shield_ids = extract_shield_ids(shields) if shields else []
stream_gen = self._create_streaming_response(
input=input,
@ -231,6 +240,7 @@ class OpenAIResponsesImpl:
text=text,
tools=tools,
max_infer_iters=max_infer_iters,
shield_ids=shield_ids,
)
if stream:
@ -264,6 +274,42 @@ class OpenAIResponsesImpl:
raise ValueError("The response stream never reached a terminal state")
return final_response
async def _check_input_safety(
self, messages: list[Message], shield_ids: list[str]
) -> OpenAIResponseContentPartRefusal | None:
"""Validate input messages against shields. Returns refusal content if violation found."""
try:
await run_multiple_shields(self.safety_api, messages, shield_ids)
except SafetyException as e:
logger.info(f"Input shield violation: {e.violation.user_message}")
return OpenAIResponseContentPartRefusal(
refusal=e.violation.user_message or "Content blocked by safety shields"
)
async def _create_refusal_response_events(
self, refusal_content: OpenAIResponseContentPartRefusal, response_id: str, created_at: int, model: str
) -> AsyncIterator[OpenAIResponseObjectStream]:
"""Create and yield refusal response events following the established streaming pattern."""
# Create initial response and yield created event
initial_response = OpenAIResponseObject(
id=response_id,
created_at=created_at,
model=model,
status="in_progress",
output=[],
)
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
# Create completed refusal response using OpenAIResponseContentPartRefusal
refusal_response = OpenAIResponseObject(
id=response_id,
created_at=created_at,
model=model,
status="completed",
output=[OpenAIResponseMessage(role="assistant", content=[refusal_content], type="message")],
)
yield OpenAIResponseObjectStreamResponseCompleted(response=refusal_response)
async def _create_streaming_response(
self,
input: str | list[OpenAIResponseInput],
@ -275,6 +321,7 @@ class OpenAIResponsesImpl:
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
max_infer_iters: int | None = 10,
shield_ids: list[str] | None = None,
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Input preprocessing
all_input, messages, tool_context = await self._process_input_with_previous_response(
@ -282,8 +329,23 @@ class OpenAIResponsesImpl:
)
await self._prepend_instructions(messages, instructions)
# Input safety validation hook - validates messages before streaming orchestrator starts
if shield_ids:
input_messages = convert_openai_to_inference_messages(messages)
input_refusal = await self._check_input_safety(input_messages, shield_ids)
if input_refusal:
# Return refusal response immediately
response_id = f"resp-{uuid.uuid4()}"
created_at = int(time.time())
async for refusal_event in self._create_refusal_response_events(
input_refusal, response_id, created_at, model
):
yield refusal_event
return
# Structured outputs
response_format = await convert_response_text_to_chat_response_format(text)
response_format = convert_response_text_to_chat_response_format(text)
ctx = ChatCompletionContext(
model=model,
@ -307,8 +369,11 @@ class OpenAIResponsesImpl:
text=text,
max_infer_iters=max_infer_iters,
tool_executor=self.tool_executor,
safety_api=self.safety_api,
shield_ids=shield_ids,
)
# Output safety validation hook - delegated to streaming orchestrator for real-time validation
# Stream the response
final_response = None
failed_response = None

View file

@ -14,9 +14,11 @@ from llama_stack.apis.agents.openai_responses import (
MCPListToolsTool,
OpenAIResponseContentPartOutputText,
OpenAIResponseError,
OpenAIResponseContentPartRefusal,
OpenAIResponseInputTool,
OpenAIResponseInputToolMCP,
OpenAIResponseMCPApprovalRequest,
OpenAIResponseMessage,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
@ -52,8 +54,14 @@ from llama_stack.apis.inference import (
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry import tracing
from ..safety import SafetyException
from .types import ChatCompletionContext, ChatCompletionResult
from .utils import convert_chat_choice_to_response_message, is_function_tool_call
from .utils import (
convert_chat_choice_to_response_message,
convert_openai_to_inference_messages,
is_function_tool_call,
run_multiple_shields,
)
logger = get_logger(name=__name__, category="agents::meta_reference")
@ -89,6 +97,8 @@ class StreamingResponseOrchestrator:
text: OpenAIResponseText,
max_infer_iters: int,
tool_executor, # Will be the tool execution logic from the main class
safety_api,
shield_ids: list[str] | None = None,
):
self.inference_api = inference_api
self.ctx = ctx
@ -97,6 +107,8 @@ class StreamingResponseOrchestrator:
self.text = text
self.max_infer_iters = max_infer_iters
self.tool_executor = tool_executor
self.safety_api = safety_api
self.shield_ids = shield_ids or []
self.sequence_number = 0
# Store MCP tool mapping that gets built during tool processing
self.mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] = ctx.tool_context.previous_tools or {}
@ -104,6 +116,43 @@ class StreamingResponseOrchestrator:
self.final_messages: list[OpenAIMessageParam] = []
# mapping for annotations
self.citation_files: dict[str, str] = {}
# Track accumulated text for shield validation
self.accumulated_text = ""
# Track if we've sent a refusal response
self.violation_detected = False
async def _check_output_stream_safety(self, text_delta: str) -> str | None:
"""Check streaming text content against shields. Returns violation message if blocked."""
if not self.shield_ids:
return None
self.accumulated_text += text_delta
# Check accumulated text periodically for violations (every 50 characters or at word boundaries)
if len(self.accumulated_text) > 50 or text_delta.endswith((" ", "\n", ".", "!", "?")):
temp_messages = [{"role": "assistant", "content": self.accumulated_text}]
messages = convert_openai_to_inference_messages(temp_messages)
try:
await run_multiple_shields(self.safety_api, messages, self.shield_ids)
except SafetyException as e:
logger.info(f"Output shield violation: {e.violation.user_message}")
return e.violation.user_message or "Generated content blocked by safety shields"
async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream:
"""Create a refusal response to replace streaming content."""
refusal_content = OpenAIResponseContentPartRefusal(refusal=violation_message)
# Create a completed refusal response
refusal_response = OpenAIResponseObject(
id=self.response_id,
created_at=self.created_at,
model=self.ctx.model,
status="completed",
output=[OpenAIResponseMessage(role="assistant", content=[refusal_content], type="message")],
)
return OpenAIResponseObjectStreamResponseCompleted(response=refusal_response)
def _clone_outputs(self, outputs: list[OpenAIResponseOutput]) -> list[OpenAIResponseOutput]:
cloned: list[OpenAIResponseOutput] = []
@ -326,6 +375,15 @@ class StreamingResponseOrchestrator:
for chunk_choice in chunk.choices:
# Emit incremental text content as delta events
if chunk_choice.delta.content:
# Check output stream safety before yielding content
violation_message = await self._check_output_stream_safety(chunk_choice.delta.content)
if violation_message:
# Stop streaming and send refusal response
yield await self._create_refusal_response(violation_message)
self.violation_detected = True
# Return immediately - no further processing needed
return
# Emit content_part.added event for first text chunk
if not content_part_emitted:
content_part_emitted = True

View file

@ -7,6 +7,7 @@
import re
import uuid
from llama_stack.apis.agents.agents import ResponseShieldSpec
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseAnnotationFileCitation,
OpenAIResponseInput,
@ -26,6 +27,8 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseText,
)
from llama_stack.apis.inference import (
CompletionMessage,
Message,
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartParam,
@ -44,7 +47,19 @@ from llama_stack.apis.inference import (
OpenAISystemMessageParam,
OpenAIToolMessageParam,
OpenAIUserMessageParam,
StopReason,
SystemMessage,
UserMessage,
)
from llama_stack.apis.safety import Safety
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="openai_responses_utils")
# ============================================================================
# Message and Content Conversion Functions
# ============================================================================
async def convert_chat_choice_to_response_message(
@ -171,7 +186,7 @@ async def convert_response_input_to_chat_messages(
pass
else:
content = await convert_response_content_to_chat_content(input_item.content)
message_type = await get_message_type_by_role(input_item.role)
message_type = get_message_type_by_role(input_item.role)
if message_type is None:
raise ValueError(
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
@ -240,7 +255,8 @@ async def convert_response_text_to_chat_response_format(
raise ValueError(f"Unsupported text format: {text.format}")
async def get_message_type_by_role(role: str):
async def get_message_type_by_role(role: str) -> type[OpenAIMessageParam] | None:
"""Get the appropriate OpenAI message parameter type for a given role."""
role_to_type = {
"user": OpenAIUserMessageParam,
"system": OpenAISystemMessageParam,
@ -307,3 +323,90 @@ def is_function_tool_call(
if t.type == "function" and t.name == tool_call.function.name:
return True
return False
# ============================================================================
# Safety and Shield Validation Functions
# ============================================================================
async def run_multiple_shields(safety_api: Safety, messages: list[Message], shield_ids: list[str]) -> None:
"""Run multiple shields against messages and raise SafetyException for violations."""
if not shield_ids or not messages:
return
for shield_id in shield_ids:
response = await safety_api.run_shield(
shield_id=shield_id,
messages=messages,
params={},
)
if response.violation and response.violation.violation_level.name == "ERROR":
from ..safety import SafetyException
raise SafetyException(response.violation)
def extract_shield_ids(shields: list | None) -> list[str]:
"""Extract shield IDs from shields parameter, handling both string IDs and ResponseShieldSpec objects."""
if not shields:
return []
shield_ids = []
for shield in shields:
if isinstance(shield, str):
shield_ids.append(shield)
elif isinstance(shield, ResponseShieldSpec):
shield_ids.append(shield.type)
else:
logger.warning(f"Unknown shield format: {shield}")
return shield_ids
def extract_text_content(content: str | list | None) -> str | None:
"""Extract text content from OpenAI message content (string or complex structure)."""
if isinstance(content, str):
return content
elif isinstance(content, list):
# Handle complex content - extract text parts only
text_parts = []
for part in content:
if hasattr(part, "text"):
text_parts.append(part.text)
elif hasattr(part, "type") and part.type == "refusal":
# Skip refusal parts - don't validate them again
continue
return " ".join(text_parts) if text_parts else None
return None
def convert_openai_to_inference_messages(openai_messages: list) -> list[Message]:
"""Convert OpenAI messages to inference API Message format."""
safety_messages = []
for msg in openai_messages:
# Handle both object attributes and dictionary keys
if hasattr(msg, "content") and hasattr(msg, "role"):
text_content = extract_text_content(msg.content)
role = msg.role
elif isinstance(msg, dict) and "content" in msg and "role" in msg:
text_content = extract_text_content(msg["content"])
role = msg["role"]
else:
continue
if text_content:
# Create appropriate message subclass based on role
if role == "user":
safety_messages.append(UserMessage(content=text_content))
elif role == "system":
safety_messages.append(SystemMessage(content=text_content))
elif role == "assistant":
safety_messages.append(
CompletionMessage(
content=text_content,
stop_reason=StopReason.end_of_turn, # Default for safety validation
)
)
# Note: Skip "tool" role messages as they're not typically validated by shields
return safety_messages

View file

@ -247,12 +247,17 @@ class LlamaGuardShield:
self.safety_categories = safety_categories
def check_unsafe_response(self, response: str) -> str | None:
# Check for "unsafe\n<code>" format
match = re.match(r"^unsafe\n(.*)$", response)
if match:
# extracts the unsafe code
extracted = match.group(1)
return extracted
# Check for direct category code format (e.g., "S1", "S2", etc.)
if re.match(r"^S\d+$", response):
return response
return None
def get_safety_categories(self) -> list[str]: