This commit is contained in:
Kai Wu 2025-10-03 08:51:36 -07:00 committed by GitHub
commit e0b041a61f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 2062 additions and 280 deletions

View file

@ -12,356 +12,330 @@ import TabItem from '@theme/TabItem';
RAG enables your applications to reference and recall information from previous interactions or external documents.
## Architecture Overview
Llama Stack now uses a modern, OpenAI-compatible API pattern for RAG:
1. **Files API**: Upload documents using `client.files.create()`
2. **Vector Stores API**: Create and manage vector stores with `client.vector_stores.create()`
3. **Responses API**: Query documents using `client.responses.create()` with the `file_search` tool
Llama Stack organizes the APIs that enable RAG into three layers:
This new approach provides better compatibility with OpenAI's ecosystem and is the recommended way to implement RAG in Llama Stack.
1. **Lower-Level APIs**: Deal with raw storage and retrieval. These include Vector IO, KeyValue IO (coming soon) and Relational IO (also coming soon)
2. **RAG Tool**: A first-class tool as part of the [Tools API](./tools) that allows you to ingest documents (from URLs, files, etc) with various chunking strategies and query them smartly
3. **Agents API**: The top-level [Agents API](./agent) that allows you to create agents that can use the tools to answer questions, perform tasks, and more
<img src="docs/static/img/rag_llama_stack.png" alt="RAG System" width="50%" />
![RAG System Architecture](/img/rag.png)
## Prerequisites
The RAG system uses lower-level storage for different types of data:
- **Vector IO**: For semantic search and retrieval
- **Key-Value and Relational IO**: For structured data storage
For this guide, we will use [Ollama](https://ollama.com/) as the inference provider.
Ollama is an LLM runtime that allows you to run Llama models locally. It's a great choice for development and testing, but you can also use any other inference provider that supports the OpenAI API.
:::info[Future Storage Types]
We may add more storage types like Graph IO in the future.
:::
Before you begin, make sure you have the following:
1. **Ollama**: Follow the [installation guide](https://ollama.com/docs/ollama/getting-started/install
) to set up Ollama on your machine.
2. **Llama Stack**: Follow the [installation guide](/docs/installation) to set up Llama Stack on your
machine.
3. **Documents**: Prepare a set of documents that you want to search. These can be plain text, PDFs, or other file types.
4. **environment variable**: Set the `LLAMA_STACK_PORT` environment variable to the port where Llama Stack is running. For example, if you are using the default port of 8321, set `export LLAMA_STACK_PORT=8321`. Also set 'OLLAMA_URL' environment variable to be 'http://localhost:11434'
## Setting up Vector Databases
## Step 0: Initialize Client
For this guide, we will use [Ollama](https://ollama.com/) as the inference provider. Ollama is an LLM runtime that allows you to run Llama models locally.
Here's how to set up a vector database for RAG:
After lauched Llama Stack server by `llama stack build --distro starter --image-type venv --run`, initialize the client with the base URL of your Llama Stack instance.
```python
# Create HTTP client
import os
from llama_stack_client import LlamaStackClient
from io import BytesIO
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
# Register a vector database
vector_db_id = "my_documents"
response = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
```
## Document Ingestion
## Step 1: Upload Documents Using Files API
You can ingest documents into the vector database using two methods: directly inserting pre-chunked documents or using the RAG Tool.
### Direct Document Insertion
The first step is to upload your documents using the Files API. Documents can be plain text, PDFs, or other file types.
<Tabs>
<TabItem value="basic" label="Basic Insertion">
<TabItem value="text" label="Upload Text Documents">
```python
# You can insert a pre-chunked document directly into the vector db
chunks = [
{
"content": "Your document text here",
"mime_type": "text/plain",
"metadata": {
"document_id": "doc1",
"author": "Jane Doe",
},
},
# Example documents with metadata
docs = [
("Acme ships globally in 3-5 business days.", {"title": "Shipping Policy"}),
("Returns are accepted within 30 days of purchase.", {"title": "Returns Policy"}),
("Support is available 24/7 via chat and email.", {"title": "Support"}),
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)
# Upload each document and collect file IDs
file_ids = []
for content, metadata in docs:
with BytesIO(content.encode()) as file_buffer:
# Set a descriptive filename
file_buffer.name = f"{metadata['title'].replace(' ', '_').lower()}.txt"
# Upload the file
create_file_response = client.files.create(
file=file_buffer,
purpose="assistants"
)
print(f"Uploaded: {create_file_response.id}")
file_ids.append(create_file_response.id)
```
</TabItem>
<TabItem value="embeddings" label="With Precomputed Embeddings">
If you decide to precompute embeddings for your documents, you can insert them directly into the vector database by including the embedding vectors in the chunk data. This is useful if you have a separate embedding service or if you want to customize the ingestion process.
<TabItem value="files" label="Upload Files from Disk">
```python
chunks_with_embeddings = [
{
"content": "First chunk of text",
"mime_type": "text/plain",
"embedding": [0.1, 0.2, 0.3, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "introduction"},
},
{
"content": "Second chunk of text",
"mime_type": "text/plain",
"embedding": [0.2, 0.3, 0.4, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "methodology"},
},
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks_with_embeddings)
# Upload a file from your local filesystem
with open("policy_document.pdf", "rb") as f:
file_response = client.files.create(
file=f,
purpose="assistants"
)
file_ids.append(file_response.id)
```
:::warning[Embedding Dimensions]
When providing precomputed embeddings, ensure the embedding dimension matches the `embedding_dimension` specified when registering the vector database.
:::
</TabItem>
<TabItem value="batch" label="Upload Multiple Documents">
```python
# Batch upload multiple documents
document_paths = [
"docs/shipping.txt",
"docs/returns.txt",
"docs/support.txt"
]
file_ids = []
for path in document_paths:
with open(path, "rb") as f:
response = client.files.create(file=f, purpose="assistants")
file_ids.append(response.id)
print(f"Uploaded {path}: {response.id}")
```
</TabItem>
</Tabs>
### Document Retrieval
## Step 2: Create a Vector Store
You can query the vector database to retrieve documents based on their embeddings.
Once you have uploaded your documents, create a vector store that will index them for semantic search.
```python
# You can then query for these chunks
chunks_response = client.vector_io.query(
vector_db_id=vector_db_id,
query="What do you know about..."
# Create vector store with uploaded files
vector_store = client.vector_stores.create(
name="acme_docs",
file_ids=file_ids,
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss"
)
print(f"Created vector store: {vector_store.name} (ID: {vector_store.id})")
```
## Using the RAG Tool
### Configuration Options
:::danger[Deprecation Notice]
The RAG Tool is being deprecated in favor of directly using the OpenAI-compatible Search API. We recommend migrating to the OpenAI APIs for better compatibility and future support.
:::
- **name**: A descriptive name for your vector store
- **file_ids**: List of file IDs to include in the vector store
- **embedding_model**: The model to use for generating embeddings (e.g., "sentence-transformers/all-MiniLM-L6-v2", "all-MiniLM-L6-v2")
- **embedding_dimension**: Dimension of the embedding vectors (e.g., 384 for MiniLM, 768 for BERT)
- **provider_id**: The vector database backend (e.g., "faiss", "chroma")
A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. and automatically chunks them into smaller pieces. More examples for how to format a RAGDocument can be found in the [appendix](#more-ragdocument-examples).
## Step 3: Query the Vector Store
### OpenAI API Integration & Migration
Use the Responses API with the `file_search` tool to query your documents.
The RAG tool has been updated to use OpenAI-compatible APIs. This provides several benefits:
- **Files API Integration**: Documents are now uploaded using OpenAI's file upload endpoints
- **Vector Stores API**: Vector storage operations use OpenAI's vector store format with configurable chunking strategies
- **Error Resilience**: When processing multiple documents, individual failures are logged but don't crash the operation. Failed documents are skipped while successful ones continue processing.
### Migration Path
We recommend migrating to the OpenAI-compatible Search API for:
1. **Better OpenAI Ecosystem Integration**: Direct compatibility with OpenAI tools and workflows including the Responses API
2. **Future-Proof**: Continued support and feature development
3. **Full OpenAI Compatibility**: Vector Stores, Files, and Search APIs are fully compatible with OpenAI's Responses API
The OpenAI APIs are used under the hood, so you can continue to use your existing RAG Tool code with minimal changes. However, we recommend updating your code to use the new OpenAI-compatible APIs for better long-term support. If any documents fail to process, they will be logged in the response but will not cause the entire operation to fail.
### RAG Tool Example
<Tabs>
<TabItem value="single" label="Single Vector Store">
```python
from llama_stack_client import RAGDocument
query = "How long does shipping take?"
urls = ["memory_optimizations.rst", "chat.rst", "llama3.rst"]
documents = [
RAGDocument(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Query documents
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What do you know about...",
)
```
### Custom Context Configuration
You can configure how the RAG tool adds metadata to the context if you find it useful for your application:
```python
# Query documents with custom template
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What do you know about...",
query_config={
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
)
```
## Building RAG-Enhanced Agents
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
### Agent with Knowledge Search
```python
from llama_stack_client import Agent
# Create agent with memory
agent = Agent(
client,
# Search the vector store
file_search_response = client.responses.create(
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant",
input=query,
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
"vector_db_ids": [vector_db_id],
# Defaults
"query_config": {
"chunk_size_in_tokens": 512,
"chunk_overlap_in_tokens": 0,
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
},
}
"type": "file_search",
"vector_store_ids": [vector_store.id],
},
],
)
session_id = agent.create_session("rag_session")
# Ask questions about documents in the vector db, and the agent will query the db to answer the question.
response = agent.create_turn(
messages=[{"role": "user", "content": "How to optimize memory in PyTorch?"}],
session_id=session_id,
)
```
:::tip[Agent Instructions]
The `instructions` field in the `AgentConfig` can be used to guide the agent's behavior. It is important to experiment with different instructions to see what works best for your use case.
:::
### Document-Aware Conversations
You can also pass documents along with the user's message and ask questions about them:
```python
# Initial document ingestion
response = agent.create_turn(
messages=[
{"role": "user", "content": "I am providing some documents for reference."}
],
documents=[
{
"content": "https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/memory_optimizations.rst",
"mime_type": "text/plain",
}
],
session_id=session_id,
)
# Query with RAG
response = agent.create_turn(
messages=[{"role": "user", "content": "What are the key topics in the documents?"}],
session_id=session_id,
)
```
### Viewing Agent Responses
You can print the response with the following:
```python
from llama_stack_client import AgentEventLogger
for log in AgentEventLogger().log(response):
log.print()
```
## Vector Database Management
### Unregistering Vector DBs
If you need to clean up and unregister vector databases, you can do so as follows:
<Tabs>
<TabItem value="single" label="Single Database">
```python
# Unregister a specified vector database
vector_db_id = "my_vector_db_id"
print(f"Unregistering vector database: {vector_db_id}")
client.vector_dbs.unregister(vector_db_id=vector_db_id)
print(file_search_response)
```
</TabItem>
<TabItem value="all" label="All Databases">
<TabItem value="multiple" label="Multiple Vector Stores">
You can search across multiple vector stores simultaneously:
```python
# Unregister all vector databases
for vector_db_id in client.vector_dbs.list():
print(f"Unregistering vector database: {vector_db_id.identifier}")
client.vector_dbs.unregister(vector_db_id=vector_db_id.identifier)
file_search_response = client.responses.create(
model="meta-llama/Llama-3.3-70B-Instruct",
input="What are your policies?",
tools=[
{
"type": "file_search",
"vector_store_ids": [
vector_store_1.id,
vector_store_2.id,
vector_store_3.id
],
},
],
)
```
</TabItem>
</Tabs>
## Best Practices
## Managing Vector Stores
### 🎯 **Document Chunking**
- Use appropriate chunk sizes (512 tokens is often a good starting point)
- Consider overlap between chunks for better context preservation
- Experiment with different chunking strategies for your content type
### 🔍 **Embedding Strategy**
- Choose embedding models that match your domain
- Consider the trade-off between embedding dimension and performance
- Test different embedding models for your specific use case
### 📊 **Query Optimization**
- Use specific, well-formed queries for better retrieval
- Experiment with different search strategies
- Consider hybrid approaches (keyword + semantic search)
### 🛡️ **Error Handling**
- Implement proper error handling for failed document processing
- Monitor ingestion success rates
- Have fallback strategies for retrieval failures
## Appendix
### More RAGDocument Examples
Here are various ways to create RAGDocument objects for different content types:
### List All Vector Stores
```python
from llama_stack_client import RAGDocument
import base64
print("Listing available vector stores:")
vector_stores = client.vector_stores.list()
# File URI
RAGDocument(document_id="num-0", content={"uri": "file://path/to/file"})
for vs in vector_stores:
print(f"- {vs.name} (ID: {vs.id})")
# Plain text
RAGDocument(document_id="num-1", content="plain text")
# List files in each vector store
files_in_store = client.vector_stores.files.list(vector_store_id=vs.id)
if files_in_store:
print(f" Files in '{vs.name}':")
for file in files_in_store:
print(f" - {file.id}")
```
# Explicit text input
RAGDocument(
document_id="num-2",
content={
"type": "text",
"text": "plain text input",
}, # for inputs that should be treated as text explicitly
### Clean Up Vector Stores
<Tabs>
<TabItem value="single" label="Delete Single Store">
```python
# Delete a specific vector store
client.vector_stores.delete(vector_store_id=vector_store.id)
print(f"Deleted vector store: {vector_store.id}")
```
</TabItem>
<TabItem value="all" label="Delete All Stores">
```python
# Delete all existing vector stores
vector_stores_to_delete = [v.id for v in client.vector_stores.list()]
for del_vs_id in vector_stores_to_delete:
client.vector_stores.delete(vector_store_id=del_vs_id)
print(f"Deleted: {del_vs_id}")
```
</TabItem>
</Tabs>
## Complete Example: Building a RAG System
Here's a complete example that puts it all together:
```python
from io import BytesIO
from llama_stack_client import LlamaStackClient
# Initialize client
client = LlamaStackClient(base_url="http://localhost:5001")
# Step 1: Prepare and upload documents
knowledge_base = [
("Python is a high-level programming language.", {"category": "Programming"}),
("Machine learning is a subset of artificial intelligence.", {"category": "AI"}),
("Neural networks are inspired by the human brain.", {"category": "AI"}),
]
file_ids = []
for content, metadata in knowledge_base:
with BytesIO(content.encode()) as file_buffer:
file_buffer.name = f"{metadata['category'].lower()}_{len(file_ids)}.txt"
response = client.files.create(file=file_buffer, purpose="assistants")
file_ids.append(response.id)
# Step 2: Create vector store
vector_store = client.vector_stores.create(
name="tech_knowledge_base",
file_ids=file_ids,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss"
)
# Image from URL
RAGDocument(
document_id="num-3",
content={
"type": "image",
"image": {"url": {"uri": "https://mywebsite.com/image.jpg"}},
},
# Step 3: Query the knowledge base
queries = [
"What is Python?",
"Tell me about neural networks",
"What is machine learning?"
]
for query in queries:
print(f"\nQuery: {query}")
response = client.responses.create(
model="meta-llama/Llama-3.3-70B-Instruct",
input=query,
tools=[
{
"type": "file_search",
"vector_store_ids": [vector_store.id],
},
],
)
print(f"Response: {response}")
```
## Migration from Legacy API
:::danger[Deprecation Notice]
The legacy `vector_io` and `vector_dbs` API is deprecated. Migrate to the OpenAI-compatible APIs for better compatibility and future support.
:::
If you're migrating from the deprecated `vector_io` and `vector_dbs` API:
<Tabs>
<TabItem value="old" label="Old API (Deprecated)">
```python
# OLD - Don't use
client.vector_dbs.register(vector_db_id="my_db", ...)
client.vector_io.insert(vector_db_id="my_db", chunks=chunks)
client.vector_io.query(vector_db_id="my_db", query="...")
```
</TabItem>
<TabItem value="new" label="New API (Recommended)">
```python
# NEW - Recommended approach
# 1. Upload files
file_response = client.files.create(file=file_buffer, purpose="assistants")
# 2. Create vector store
vector_store = client.vector_stores.create(
name="my_store",
file_ids=[file_response.id],
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss"
)
# Base64 encoded image
B64_ENCODED_IMAGE = base64.b64encode(
requests.get(
"https://raw.githubusercontent.com/meta-llama/llama-stack/refs/heads/main/docs/_static/llama-stack.png"
).content
)
RAGDocument(
document_id="num-4",
content={"type": "image", "image": {"data": B64_ENCODED_IMAGE}},
# 3. Query using Responses API
response = client.responses.create(
model="meta-llama/Llama-3.3-70B-Instruct",
input=query,
tools=[{"type": "file_search", "vector_store_ids": [vector_store.id]}],
)
```
For more strongly typed interaction use the typed dicts found [here](https://github.com/meta-llama/llama-stack-client-python/blob/38cd91c9e396f2be0bec1ee96a19771582ba6f17/src/llama_stack_client/types/shared_params/document.py).
</TabItem>
</Tabs>
### Migration Benefits
1. **Better OpenAI Ecosystem Integration**: Direct compatibility with OpenAI tools and workflows
2. **Future-Proof**: Continued support and feature development
3. **Full OpenAI Compatibility**: Vector Stores, Files, and Search APIs work with OpenAI's Responses API
4. **Enhanced Error Handling**: Individual document failures don't crash entire operations

File diff suppressed because one or more lines are too long

BIN
docs/static/img/rag_llama_stack.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 691 KiB