mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 02:09:48 +00:00
implement embedding generation in supported inference providers
This commit is contained in:
parent
b896be2311
commit
e167e9eb93
16 changed files with 383 additions and 29 deletions
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from typing import * # noqa: F403
|
||||
import json
|
||||
|
||||
from botocore.client import BaseClient
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
|
@ -448,4 +449,18 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embeddings = []
|
||||
for content in contents:
|
||||
input_text = str(content) if not isinstance(content, str) else content
|
||||
input_body = {"inputText": input_text}
|
||||
body = json.dumps(input_body)
|
||||
response = self.client.invoke_model(
|
||||
body=body,
|
||||
modelId=model.provider_resource_id,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
response_body = json.loads(response.get("body").read())
|
||||
embeddings.append(response_body.get("embedding"))
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
|
|||
@json_schema_type
|
||||
class FireworksImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.fireworks.ai/inference",
|
||||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
|
|
@ -24,6 +24,6 @@ class FireworksImplConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.fireworks.ai/inference",
|
||||
"url": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": "${env.FIREWORKS_API_KEY}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
|
@ -12,6 +12,7 @@ from llama_models.datatypes import CoreModelId
|
|||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from openai import OpenAI
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
|
|
@ -89,19 +90,24 @@ class FireworksInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = None
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key is not None:
|
||||
fireworks_api_key = self.config.api_key
|
||||
return self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.fireworks_api_key:
|
||||
raise ValueError(
|
||||
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
|
||||
)
|
||||
fireworks_api_key = provider_data.fireworks_api_key
|
||||
return provider_data.fireworks_api_key
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = self._get_api_key()
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
def _get_openai_client(self) -> OpenAI:
|
||||
return OpenAI(base_url=self.config.url, api_key=self._get_api_key())
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -264,4 +270,15 @@ class FireworksInferenceAdapter(
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
client = self._get_openai_client()
|
||||
kwargs = {}
|
||||
if model.metadata.get("embedding_dimensions"):
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
||||
response = client.embeddings.create(
|
||||
model=model.provider_resource_id, input=contents, **kwargs
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
|
|
@ -321,9 +321,26 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
response = await self.client.embed(
|
||||
model=model.provider_resource_id, input=contents
|
||||
)
|
||||
embeddings = response["embeddings"]
|
||||
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
# ollama does not have embedding models running. Check if the model is in list of available models.
|
||||
if model.model_type == ModelType.embedding_model:
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not available in Ollama. "
|
||||
f"Available models: {', '.join(available_models)}"
|
||||
)
|
||||
return model
|
||||
model = await self.register_helper.register_model(model)
|
||||
models = await self.client.ps()
|
||||
available_models = [m["model"] for m in models["models"]]
|
||||
|
|
|
|||
|
|
@ -253,4 +253,9 @@ class TogetherInferenceAdapter(
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
r = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id, input=contents
|
||||
)
|
||||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
|
|
@ -203,4 +203,14 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
if model.metadata.get("embedding_dimensions"):
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
||||
response = self.client.embeddings.create(
|
||||
model=model.provider_resource_id, input=contents, **kwargs
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue