mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-15 14:08:00 +00:00
feat(responses): add MCP argument streaming and content part events (#3136)
# What does this PR do? Adds content part streaming events to the OpenAI-compatible Responses API to support more granular streaming of response content. This introduces: 1. New schema types for content parts: `OpenAIResponseContentPart` with variants for text output and refusals 2. New streaming event types: - `OpenAIResponseObjectStreamResponseContentPartAdded` for when content parts begin - `OpenAIResponseObjectStreamResponseContentPartDone` for when content parts complete 3. Implementation in the reference provider to emit these events during streaming responses. Also emits MCP arguments just like function call ones. ## Test Plan Updated existing streaming tests to verify content part events are properly emitted
This commit is contained in:
parent
8638537d14
commit
e1e161553c
6 changed files with 480 additions and 35 deletions
|
@ -623,6 +623,62 @@ class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
|
|||
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartOutputText(BaseModel):
|
||||
type: Literal["output_text"] = "output_text"
|
||||
text: str
|
||||
# TODO: add annotations, logprobs, etc.
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartRefusal(BaseModel):
|
||||
type: Literal["refusal"] = "refusal"
|
||||
refusal: str
|
||||
|
||||
|
||||
OpenAIResponseContentPart = Annotated[
|
||||
OpenAIResponseContentPartOutputText | OpenAIResponseContentPartRefusal,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseContentPart, name="OpenAIResponseContentPart")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartAdded(BaseModel):
|
||||
"""Streaming event for when a new content part is added to a response item.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The content part that was added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.added"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.added"] = "response.content_part.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartDone(BaseModel):
|
||||
"""Streaming event for when a content part is completed.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The completed content part
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.done"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.done"] = "response.content_part.done"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseOutputItemAdded
|
||||
|
@ -642,6 +698,8 @@ OpenAIResponseObjectStream = Annotated[
|
|||
| OpenAIResponseObjectStreamResponseMcpCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseMcpCallFailed
|
||||
| OpenAIResponseObjectStreamResponseMcpCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseContentPartAdded
|
||||
| OpenAIResponseObjectStreamResponseContentPartDone
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
|
|
@ -20,6 +20,7 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIDeleteResponseObject,
|
||||
OpenAIResponseContentPartOutputText,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputFunctionToolCallOutput,
|
||||
OpenAIResponseInputMessageContent,
|
||||
|
@ -32,9 +33,13 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseContentPartAdded,
|
||||
OpenAIResponseObjectStreamResponseContentPartDone,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpCallCompleted,
|
||||
OpenAIResponseObjectStreamResponseMcpCallFailed,
|
||||
OpenAIResponseObjectStreamResponseMcpCallInProgress,
|
||||
|
@ -475,6 +480,8 @@ class OpenAIResponsesImpl:
|
|||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
# Track tool call items for streaming events
|
||||
tool_call_item_ids: dict[int, str] = {}
|
||||
# Track content parts for streaming events
|
||||
content_part_emitted = False
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
|
@ -483,6 +490,18 @@ class OpenAIResponsesImpl:
|
|||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
# Emit content_part.added event for first text chunk
|
||||
if not content_part_emitted:
|
||||
content_part_emitted = True
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartAdded(
|
||||
response_id=response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartOutputText(
|
||||
text="", # Will be filled incrementally via text deltas
|
||||
),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
|
@ -529,16 +548,33 @@ class OpenAIResponsesImpl:
|
|||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Stream function call arguments as they arrive
|
||||
# Stream tool call arguments as they arrive (differentiate between MCP and function calls)
|
||||
if tool_call.function and tool_call.function.arguments:
|
||||
tool_call_item_id = tool_call_item_ids[tool_call.index]
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = (
|
||||
ctx.mcp_tool_to_server
|
||||
and tool_call.function.name
|
||||
and tool_call.function.name in ctx.mcp_tool_to_server
|
||||
)
|
||||
if is_mcp_tool:
|
||||
# Emit MCP-specific argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
else:
|
||||
# Emit function call argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Accumulate arguments for final response (only for subsequent chunks)
|
||||
if not is_new_tool_call:
|
||||
|
@ -546,27 +582,55 @@ class OpenAIResponsesImpl:
|
|||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
|
||||
# Emit function_call_arguments.done events for completed tool calls
|
||||
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
tool_call_item_id = tool_call_item_ids[tool_call_index]
|
||||
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
|
||||
tool_call_name = chat_response_tool_calls[tool_call_index].function.name
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = ctx.mcp_tool_to_server and tool_call_name and tool_call_name in ctx.mcp_tool_to_server
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
if is_mcp_tool:
|
||||
# Emit MCP-specific argument done event
|
||||
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
else:
|
||||
# Emit function call argument done event
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
|
||||
# when there are tool calls, we need to clear the content
|
||||
chat_response_content = []
|
||||
else:
|
||||
tool_calls = None
|
||||
|
||||
# Emit content_part.done event if text content was streamed (before content gets cleared)
|
||||
if content_part_emitted:
|
||||
final_text = "".join(chat_response_content)
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartDone(
|
||||
response_id=response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartOutputText(
|
||||
text=final_text,
|
||||
),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Clear content when there are tool calls (OpenAI spec behavior)
|
||||
if chat_response_tool_calls:
|
||||
chat_response_content = []
|
||||
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue