[#432] Add Groq Provider - chat completions (#609)

# What does this PR do?

Contributes towards issue (#432)

- Groq text chat completions
- Streaming
- All the sampling params that Groq supports

A lot of inspiration taken from @mattf's good work at
https://github.com/meta-llama/llama-stack/pull/355

**What this PR does not do**

- Tool calls (Future PR)
- Adding llama-guard model
- See if we can add embeddings

### PR Train

- https://github.com/meta-llama/llama-stack/pull/609 👈 
- https://github.com/meta-llama/llama-stack/pull/630


## Test Plan

<details>

<summary>Environment</summary>

```bash
export GROQ_API_KEY=<api_key>

wget https://raw.githubusercontent.com/aidando73/llama-stack/240e6e2a9c20450ffdcfbabd800a6c0291f19288/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/92c9b5297f9eda6a6e901e1adbd894e169dbb278/run.yaml

# Build and run environment
pip install -e . \
&& llama stack build --config ./build.yaml --image-type conda \
&& llama stack run ./run.yaml \
  --port 5001
```

</details>

<details>

<summary>Manual tests</summary>

Using this jupyter notebook to test manually:
2140976d76/hello.ipynb

Use this code to test passing in the api key from provider_data

```
from llama_stack_client import LlamaStackClient

client = LlamaStackClient(
    base_url="http://localhost:5001",
)

response = client.inference.chat_completion(
    model_id="Llama3.2-3B-Instruct",
    messages=[
        {"role": "user", "content": "Hello, world client!"},
    ],
    # Test passing in groq_api_key from the client
    # Need to comment out the groq_api_key in the run.yaml file
    x_llama_stack_provider_data='{"groq_api_key": "<api-key>"}',
    # stream=True,
)
response
```

</details>

<details>
<summary>Integration</summary>

`pytest llama_stack/providers/tests/inference/test_text_inference.py -v
-k groq`

(run in same environment)

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-groq] PASSED                 [  6%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-groq] SKIPPED (Other inf...) [ 12%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_3b-groq] SKIPPED [ 18%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-groq] PASSED [ 25%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-groq] SKIPPED (Ot...) [ 31%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-groq] PASSED  [ 37%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-groq] SKIPPED [ 43%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-groq] SKIPPED [ 50%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-groq] PASSED                 [ 56%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-groq] SKIPPED (Other inf...) [ 62%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_8b-groq] SKIPPED [ 68%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-groq] PASSED [ 75%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-groq] SKIPPED (Ot...) [ 81%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-groq] PASSED  [ 87%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-groq] SKIPPED [ 93%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-groq] SKIPPED [100%]

======================================= 6 passed, 10 skipped, 160 deselected, 7 warnings in 2.05s ========================================
```
</details>

<details>
<summary>Unit tests</summary>

`pytest llama_stack/providers/tests/inference/groq/ -v`

```
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_sets_model PASSED            [  5%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_user_message PASSED [ 10%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_system_message PASSED [ 15%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_completion_message PASSED [ 20%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_logprobs PASSED [ 25%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_response_format PASSED [ 30%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_repetition_penalty PASSED [ 35%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_stream PASSED       [ 40%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_n_is_1 PASSED                [ 45%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_if_max_tokens_is_0_then_it_is_not_included PASSED [ 50%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_max_tokens_if_set PASSED [ 55%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_temperature PASSED  [ 60%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_top_p PASSED        [ 65%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_returns_response PASSED [ 70%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_stop_to_end_of_message PASSED [ 75%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_length_to_end_of_message PASSED [ 80%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertStreamChatCompletionResponse::test_returns_stream PASSED [ 85%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_raises_runtime_error_if_config_is_not_groq_config PASSED [ 90%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_returns_groq_adapter PASSED                            [ 95%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqConfig::test_api_key_defaults_to_env_var PASSED                   [100%]

==================================================== 20 passed, 11 warnings in 0.08s =====================================================
```

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation
- [x] Wrote necessary unit or integration tests.
This commit is contained in:
Aidan Do 2025-01-04 03:27:49 +11:00 committed by GitHub
parent e3f187fb83
commit e1f42eb5a5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 692 additions and 0 deletions

View file

@ -84,6 +84,7 @@ Additionally, we have designed every element of the Stack such that APIs as well
| Fireworks | Hosted | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| AWS Bedrock | Hosted | | :heavy_check_mark: | | :heavy_check_mark: | |
| Together | Hosted | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | |
| Groq | Hosted | | :heavy_check_mark: | | | |
| Ollama | Single Node | | :heavy_check_mark: | | | |
| TGI | Hosted and Single Node | | :heavy_check_mark: | | | |
| [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) | Hosted and Single Node | | :heavy_check_mark: | | | |

View file

@ -154,6 +154,16 @@ def available_providers() -> List[ProviderSpec]:
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq",
pip_packages=["groq"],
module="llama_stack.providers.remote.inference.groq",
config_class="llama_stack.providers.remote.inference.groq.GroqConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq.GroqProviderDataValidator",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -0,0 +1,26 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from llama_stack.apis.inference import Inference
from .config import GroqConfig
class GroqProviderDataValidator(BaseModel):
groq_api_key: str
async def get_adapter_impl(config: GroqConfig, _deps) -> Inference:
# import dynamically so the import is used only when it is needed
from .groq import GroqInferenceAdapter
if not isinstance(config, GroqConfig):
raise RuntimeError(f"Unexpected config type: {type(config)}")
adapter = GroqInferenceAdapter(config)
return adapter

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class GroqConfig(BaseModel):
api_key: Optional[str] = Field(
# The Groq client library loads the GROQ_API_KEY environment variable by default
default=None,
description="The Groq API key",
)

View file

@ -0,0 +1,150 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import AsyncIterator, List, Optional, Union
from groq import Groq
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
from llama_models.sku_list import CoreModelId
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
ToolChoice,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
build_model_alias_with_just_provider_model_id,
ModelRegistryHelper,
)
from .groq_utils import (
convert_chat_completion_request,
convert_chat_completion_response,
convert_chat_completion_response_stream,
)
_MODEL_ALIASES = [
build_model_alias(
"llama3-8b-8192",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama-3.1-8b-instant",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3-70b-8192",
CoreModelId.llama3_70b_instruct.value,
),
build_model_alias(
"llama-3.3-70b-versatile",
CoreModelId.llama3_3_70b_instruct.value,
),
# Groq only contains a preview version for llama-3.2-3b
# Preview models aren't recommended for production use, but we include this one
# to pass the test fixture
# TODO(aidand): Replace this with a stable model once Groq supports it
build_model_alias(
"llama-3.2-3b-preview",
CoreModelId.llama3_2_3b_instruct.value,
),
]
class GroqInferenceAdapter(Inference, ModelRegistryHelper, NeedsRequestProviderData):
_config: GroqConfig
def __init__(self, config: GroqConfig):
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
self._config = config
def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
# Groq doesn't support non-chat completion as of time of writing
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[
ToolPromptFormat
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
model_id = self.get_provider_model_id(model_id)
if model_id == "llama-3.2-3b-preview":
warnings.warn(
"Groq only contains a preview version for llama-3.2-3b-instruct. "
"Preview models aren't recommended for production use. "
"They can be discontinued on short notice."
)
request = convert_chat_completion_request(
request=ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
)
response = self._get_client().chat.completions.create(**request)
if stream:
return convert_chat_completion_response_stream(response)
else:
return convert_chat_completion_response(response)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
def _get_client(self) -> Groq:
if self._config.api_key is not None:
return Groq(api_key=self.config.api_key)
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.groq_api_key:
raise ValueError(
'Pass Groq API Key in the header X-LlamaStack-ProviderData as { "groq_api_key": "<your api key>" }'
)
return Groq(api_key=provider_data.groq_api_key)

View file

@ -0,0 +1,153 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import AsyncGenerator, Literal
from groq import Stream
from groq.types.chat.chat_completion import ChatCompletion
from groq.types.chat.chat_completion_assistant_message_param import (
ChatCompletionAssistantMessageParam,
)
from groq.types.chat.chat_completion_chunk import ChatCompletionChunk
from groq.types.chat.chat_completion_message_param import ChatCompletionMessageParam
from groq.types.chat.chat_completion_system_message_param import (
ChatCompletionSystemMessageParam,
)
from groq.types.chat.chat_completion_user_message_param import (
ChatCompletionUserMessageParam,
)
from groq.types.chat.completion_create_params import CompletionCreateParams
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
Message,
StopReason,
)
def convert_chat_completion_request(
request: ChatCompletionRequest,
) -> CompletionCreateParams:
"""
Convert a ChatCompletionRequest to a Groq API-compatible dictionary.
Warns client if request contains unsupported features.
"""
if request.logprobs:
# Groq doesn't support logprobs at the time of writing
warnings.warn("logprobs are not supported yet")
if request.response_format:
# Groq's JSON mode is beta at the time of writing
warnings.warn("response_format is not supported yet")
if request.sampling_params.repetition_penalty != 1.0:
# groq supports frequency_penalty, but frequency_penalty and sampling_params.repetition_penalty
# seem to have different semantics
# frequency_penalty defaults to 0 is a float between -2.0 and 2.0
# repetition_penalty defaults to 1 and is often set somewhere between 1.0 and 2.0
# so we exclude it for now
warnings.warn("repetition_penalty is not supported")
if request.tools:
warnings.warn("tools are not supported yet")
return CompletionCreateParams(
model=request.model,
messages=[_convert_message(message) for message in request.messages],
logprobs=None,
frequency_penalty=None,
stream=request.stream,
max_tokens=request.sampling_params.max_tokens or None,
temperature=request.sampling_params.temperature,
top_p=request.sampling_params.top_p,
)
def _convert_message(message: Message) -> ChatCompletionMessageParam:
if message.role == "system":
return ChatCompletionSystemMessageParam(role="system", content=message.content)
elif message.role == "user":
return ChatCompletionUserMessageParam(role="user", content=message.content)
elif message.role == "assistant":
return ChatCompletionAssistantMessageParam(
role="assistant", content=message.content
)
else:
raise ValueError(f"Invalid message role: {message.role}")
def convert_chat_completion_response(
response: ChatCompletion,
) -> ChatCompletionResponse:
# groq only supports n=1 at time of writing, so there is only one choice
choice = response.choices[0]
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content,
stop_reason=_map_finish_reason_to_stop_reason(choice.finish_reason),
),
)
def _map_finish_reason_to_stop_reason(
finish_reason: Literal["stop", "length", "tool_calls"]
) -> StopReason:
"""
Convert a Groq chat completion finish_reason to a StopReason.
finish_reason: Literal["stop", "length", "tool_calls"]
- stop -> model hit a natural stop point or a provided stop sequence
- length -> maximum number of tokens specified in the request was reached
- tool_calls -> model called a tool
"""
if finish_reason == "stop":
return StopReason.end_of_turn
elif finish_reason == "length":
return StopReason.out_of_tokens
elif finish_reason == "tool_calls":
raise NotImplementedError("tool_calls is not supported yet")
else:
raise ValueError(f"Invalid finish reason: {finish_reason}")
async def convert_chat_completion_response_stream(
stream: Stream[ChatCompletionChunk],
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
event_type = ChatCompletionResponseEventType.start
for chunk in stream:
choice = chunk.choices[0]
# We assume there's only one finish_reason for the entire stream.
# We collect the last finish_reason
if choice.finish_reason:
stop_reason = _map_finish_reason_to_stop_reason(choice.finish_reason)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=choice.delta.content or "",
logprobs=None,
)
)
event_type = ChatCompletionResponseEventType.progress
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
logprobs=None,
stop_reason=stop_reason,
)
)

View file

@ -19,6 +19,7 @@ from llama_stack.providers.remote.inference.bedrock import BedrockConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.groq import GroqConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
@ -151,6 +152,22 @@ def inference_together() -> ProviderFixture:
)
@pytest.fixture(scope="session")
def inference_groq() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="groq",
provider_type="remote::groq",
config=GroqConfig().model_dump(),
)
],
provider_data=dict(
groq_api_key=get_env_or_fail("GROQ_API_KEY"),
),
)
@pytest.fixture(scope="session")
def inference_bedrock() -> ProviderFixture:
return ProviderFixture(
@ -236,6 +253,7 @@ INFERENCE_FIXTURES = [
"ollama",
"fireworks",
"together",
"groq",
"vllm_remote",
"remote",
"bedrock",

View file

@ -0,0 +1,271 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from groq.types.chat.chat_completion import ChatCompletion, Choice
from groq.types.chat.chat_completion_chunk import (
ChatCompletionChunk,
Choice as StreamChoice,
ChoiceDelta,
)
from groq.types.chat.chat_completion_message import ChatCompletionMessage
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponseEventType,
CompletionMessage,
StopReason,
SystemMessage,
UserMessage,
)
from llama_stack.providers.remote.inference.groq.groq_utils import (
convert_chat_completion_request,
convert_chat_completion_response,
convert_chat_completion_response_stream,
)
class TestConvertChatCompletionRequest:
def test_sets_model(self):
request = self._dummy_chat_completion_request()
request.model = "Llama-3.2-3B"
converted = convert_chat_completion_request(request)
assert converted["model"] == "Llama-3.2-3B"
def test_converts_user_message(self):
request = self._dummy_chat_completion_request()
request.messages = [UserMessage(content="Hello World")]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "user", "content": "Hello World"},
]
def test_converts_system_message(self):
request = self._dummy_chat_completion_request()
request.messages = [SystemMessage(content="You are a helpful assistant.")]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "system", "content": "You are a helpful assistant."},
]
def test_converts_completion_message(self):
request = self._dummy_chat_completion_request()
request.messages = [
UserMessage(content="Hello World"),
CompletionMessage(
content="Hello World! How can I help you today?",
stop_reason=StopReason.end_of_message,
),
]
converted = convert_chat_completion_request(request)
assert converted["messages"] == [
{"role": "user", "content": "Hello World"},
{"role": "assistant", "content": "Hello World! How can I help you today?"},
]
def test_does_not_include_logprobs(self):
request = self._dummy_chat_completion_request()
request.logprobs = True
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "logprobs are not supported yet" in warnings[0].message.args[0]
assert converted.get("logprobs") is None
def test_does_not_include_response_format(self):
request = self._dummy_chat_completion_request()
request.response_format = {
"type": "json_object",
"json_schema": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
},
},
}
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "response_format is not supported yet" in warnings[0].message.args[0]
assert converted.get("response_format") is None
def test_does_not_include_repetition_penalty(self):
request = self._dummy_chat_completion_request()
request.sampling_params.repetition_penalty = 1.5
with pytest.warns(Warning) as warnings:
converted = convert_chat_completion_request(request)
assert "repetition_penalty is not supported" in warnings[0].message.args[0]
assert converted.get("repetition_penalty") is None
assert converted.get("frequency_penalty") is None
def test_includes_stream(self):
request = self._dummy_chat_completion_request()
request.stream = True
converted = convert_chat_completion_request(request)
assert converted["stream"] is True
def test_if_max_tokens_is_0_then_it_is_not_included(self):
request = self._dummy_chat_completion_request()
# 0 is the default value for max_tokens
# So we assume that if it's 0, the user didn't set it
request.sampling_params.max_tokens = 0
converted = convert_chat_completion_request(request)
assert converted.get("max_tokens") is None
def test_includes_max_tokens_if_set(self):
request = self._dummy_chat_completion_request()
request.sampling_params.max_tokens = 100
converted = convert_chat_completion_request(request)
assert converted["max_tokens"] == 100
def _dummy_chat_completion_request(self):
return ChatCompletionRequest(
model="Llama-3.2-3B",
messages=[UserMessage(content="Hello World")],
)
def test_includes_temperature(self):
request = self._dummy_chat_completion_request()
request.sampling_params.temperature = 0.5
converted = convert_chat_completion_request(request)
assert converted["temperature"] == 0.5
def test_includes_top_p(self):
request = self._dummy_chat_completion_request()
request.sampling_params.top_p = 0.95
converted = convert_chat_completion_request(request)
assert converted["top_p"] == 0.95
class TestConvertNonStreamChatCompletionResponse:
def test_returns_response(self):
response = self._dummy_chat_completion_response()
response.choices[0].message.content = "Hello World"
converted = convert_chat_completion_response(response)
assert converted.completion_message.content == "Hello World"
def test_maps_stop_to_end_of_message(self):
response = self._dummy_chat_completion_response()
response.choices[0].finish_reason = "stop"
converted = convert_chat_completion_response(response)
assert converted.completion_message.stop_reason == StopReason.end_of_turn
def test_maps_length_to_end_of_message(self):
response = self._dummy_chat_completion_response()
response.choices[0].finish_reason = "length"
converted = convert_chat_completion_response(response)
assert converted.completion_message.stop_reason == StopReason.out_of_tokens
def _dummy_chat_completion_response(self):
return ChatCompletion(
id="chatcmpl-123",
model="Llama-3.2-3B",
choices=[
Choice(
index=0,
message=ChatCompletionMessage(
role="assistant", content="Hello World"
),
finish_reason="stop",
)
],
created=1729382400,
object="chat.completion",
)
class TestConvertStreamChatCompletionResponse:
@pytest.mark.asyncio
async def test_returns_stream(self):
def chat_completion_stream():
messages = ["Hello ", "World ", " !"]
for i, message in enumerate(messages):
chunk = self._dummy_chat_completion_chunk()
chunk.choices[0].delta.content = message
if i == len(messages) - 1:
chunk.choices[0].finish_reason = "stop"
else:
chunk.choices[0].finish_reason = None
yield chunk
chunk = self._dummy_chat_completion_chunk()
chunk.choices[0].delta.content = None
chunk.choices[0].finish_reason = "stop"
yield chunk
stream = chat_completion_stream()
converted = convert_chat_completion_response_stream(stream)
iter = converted.__aiter__()
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.start
assert chunk.event.delta == "Hello "
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == "World "
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == " !"
# Dummy chunk to ensure the last chunk is really the end of the stream
# This one technically maps to Groq's final "stop" chunk
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.progress
assert chunk.event.delta == ""
chunk = await iter.__anext__()
assert chunk.event.event_type == ChatCompletionResponseEventType.complete
assert chunk.event.delta == ""
assert chunk.event.stop_reason == StopReason.end_of_turn
with pytest.raises(StopAsyncIteration):
await iter.__anext__()
def _dummy_chat_completion_chunk(self):
return ChatCompletionChunk(
id="chatcmpl-123",
model="Llama-3.2-3B",
choices=[
StreamChoice(
index=0,
delta=ChoiceDelta(role="assistant", content="Hello World"),
)
],
created=1729382400,
object="chat.completion.chunk",
x_groq=None,
)

View file

@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack.apis.inference import Inference
from llama_stack.providers.remote.inference.groq import get_adapter_impl
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.remote.inference.groq.groq import GroqInferenceAdapter
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
class TestGroqInit:
@pytest.mark.asyncio
async def test_raises_runtime_error_if_config_is_not_groq_config(self):
config = OllamaImplConfig(model="llama3.1-8b-8192")
with pytest.raises(RuntimeError):
await get_adapter_impl(config, None)
@pytest.mark.asyncio
async def test_returns_groq_adapter(self):
config = GroqConfig()
adapter = await get_adapter_impl(config, None)
assert type(adapter) is GroqInferenceAdapter
assert isinstance(adapter, Inference)

View file

@ -371,6 +371,14 @@ class TestInference:
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type in ("remote::groq",):
pytest.skip(
provider.__provider_spec__.provider_type
+ " doesn't support tool calling yet"
)
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
@ -411,6 +419,13 @@ class TestInference:
sample_tool_definition,
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type in ("remote::groq",):
pytest.skip(
provider.__provider_spec__.provider_type
+ " doesn't support tool calling yet"
)
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",