mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 10:51:59 +00:00
feat (RAG): Implement configurable search mode in RAGQueryConfig
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
parent
85b5f3172b
commit
e2a7022d3c
14 changed files with 210 additions and 43 deletions
7
docs/_static/llama-stack-spec.html
vendored
7
docs/_static/llama-stack-spec.html
vendored
|
|
@ -11601,6 +11601,7 @@
|
|||
},
|
||||
"max_chunks": {
|
||||
"type": "integer",
|
||||
<<<<<<< HEAD
|
||||
"default": 5,
|
||||
"description": "Maximum number of chunks to retrieve."
|
||||
},
|
||||
|
|
@ -11608,6 +11609,12 @@
|
|||
"type": "string",
|
||||
"default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
"description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\""
|
||||
=======
|
||||
"default": 5
|
||||
},
|
||||
"mode": {
|
||||
"type": "string"
|
||||
>>>>>>> 1a0433d2 (feat (RAG): Implement configurable search mode in RAGQueryConfig)
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
|
|
|||
5
docs/_static/llama-stack-spec.yaml
vendored
5
docs/_static/llama-stack-spec.yaml
vendored
|
|
@ -8072,6 +8072,7 @@ components:
|
|||
max_chunks:
|
||||
type: integer
|
||||
default: 5
|
||||
<<<<<<< HEAD
|
||||
description: Maximum number of chunks to retrieve.
|
||||
chunk_template:
|
||||
type: string
|
||||
|
|
@ -8086,6 +8087,10 @@ components:
|
|||
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
|
||||
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
|
||||
{chunk.content}\nMetadata: {metadata}\n"
|
||||
=======
|
||||
mode:
|
||||
type: string
|
||||
>>>>>>> 1a0433d2 (feat (RAG): Implement configurable search mode in RAGQueryConfig)
|
||||
additionalProperties: false
|
||||
required:
|
||||
- query_generator_config
|
||||
|
|
|
|||
|
|
@ -66,6 +66,25 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
|
|||
2. Configure your Llama Stack project to use SQLite-Vec.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Supported Search Modes
|
||||
|
||||
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.
|
||||
|
||||
When using the RAGTool interface, you can specify the desired search behavior via the search_mode parameter in
|
||||
`RAGQueryConfig`. For example:
|
||||
|
||||
```python
|
||||
from llama_stack.apis.tool_runtime.rag import RAGQueryConfig
|
||||
|
||||
query_config = RAGQueryConfig(max_chunks=6, mode="vector")
|
||||
|
||||
results = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content="what is torchtune",
|
||||
query_config=query_config,
|
||||
)
|
||||
```
|
||||
|
||||
## Installation
|
||||
|
||||
You can install SQLite-Vec using pip:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue