feat!: Migrate Vector DB IDs to Vector Store IDs (breaking change) (#3253)
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 35s
Pre-commit / pre-commit (push) Successful in 1m15s

# What does this PR do?
This change migrates the VectorDB id generation to Vector Stores.

This is a breaking change for **_some users_** that may have application
code using the `vector_db_id` parameter in the request of the VectorDB
protocol instead of the `VectorDB.identifier` in the response.

By default we will now create a Vector Store every time we register a
VectorDB. The caveat with this approach is that this maps the
`vector_db_id` → `vector_store.name`. This is a reasonable tradeoff to
transition users towards OpenAI Vector Stores.

As an added benefit, registering VectorDBs will result in them appearing
in the VectorStores admin UI.

### Why?
This PR makes the `POST` API call to `/v1/vector-dbs` swap the
`vector_db_id` parameter in the **request body** into the VectorStore's
name field and sets the `vector_db_id` to the generated vector store id
(e.g., `vs_038247dd-4bbb-4dbb-a6be-d5ecfd46cfdb`).

That means that users would have to do something like follows in their
application code:

```python
res = client.vector_dbs.register(
    vector_db_id='my-vector-db-id', 
    embedding_model='ollama/all-minilm:l6-v2', 
    embedding_dimension=384,
)
vector_db_id = res.identifier
```

And then the rest of their code would behave, including `VectorIO`'s
insert protocol using `vector_db_id` in the request.

An alternative implementation would be to just delete the `vector_db_id`
parameter in `VectorDB` but the end result would still require users
having to write `vector_db_id = res.identifier` since
`VectorStores.create()` generates the ID for you.

So this approach felt the easiest way to migrate users towards
VectorStores (subsequent PRs will be added to trigger `files.create()`
and `vector_stores.files.create()`).

## Test Plan
Unit tests and integration tests have been added.

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Arceo 2025-09-05 07:40:34 -06:00 committed by GitHub
parent 64b2977162
commit e2fe39aee1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 209 additions and 49 deletions

View file

@ -47,34 +47,45 @@ def client_with_empty_registry(client_with_models):
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension):
# Register a memory bank first
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
vector_db_name = "test_vector_db"
register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_name,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
actual_vector_db_id = register_response.identifier
# Retrieve the memory bank and validate its properties
response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=vector_db_id)
response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=actual_vector_db_id)
assert response is not None
assert response.identifier == vector_db_id
assert response.identifier == actual_vector_db_id
assert response.embedding_model == embedding_model_id
assert response.provider_resource_id == vector_db_id
assert response.identifier.startswith("vs_")
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension):
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
vector_db_name = "test_vector_db"
response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_name,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_dbs_after_register == [vector_db_id]
actual_vector_db_id = response.identifier
assert actual_vector_db_id.startswith("vs_")
assert actual_vector_db_id != vector_db_name
client_with_empty_registry.vector_dbs.unregister(vector_db_id=vector_db_id)
vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_dbs_after_register == [actual_vector_db_id]
vector_stores = client_with_empty_registry.vector_stores.list()
assert len(vector_stores.data) == 1
vector_store = vector_stores.data[0]
assert vector_store.id == actual_vector_db_id
assert vector_store.name == vector_db_name
client_with_empty_registry.vector_dbs.unregister(vector_db_id=actual_vector_db_id)
vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert len(vector_dbs) == 0
@ -91,20 +102,22 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe
],
)
def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case):
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
vector_db_name = "test_vector_db"
register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_name,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
actual_vector_db_id = register_response.identifier
client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
chunks=sample_chunks,
)
response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
query="What is the capital of France?",
)
assert response is not None
@ -113,7 +126,7 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
query=query,
)
assert response is not None
@ -128,13 +141,15 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
"remote::qdrant": {"score_threshold": -1.0},
"inline::qdrant": {"score_threshold": -1.0},
}
vector_db_id = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
vector_db_name = "test_precomputed_embeddings_db"
register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_name,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
actual_vector_db_id = register_response.identifier
chunks_with_embeddings = [
Chunk(
content="This is a test chunk with precomputed embedding.",
@ -144,13 +159,13 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
]
client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None),
)
@ -173,13 +188,15 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
"remote::qdrant": {"score_threshold": 0.0},
"inline::qdrant": {"score_threshold": 0.0},
}
vector_db_id = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
vector_db_name = "test_precomputed_embeddings_db"
register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_name,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
actual_vector_db_id = register_response.identifier
chunks_with_embeddings = [
Chunk(
content="duplicate",
@ -189,13 +206,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
vector_db_id=actual_vector_db_id,
query="duplicate",
params=vector_io_provider_params_dict.get(provider, None),
)