feat!: Migrate Vector DB IDs to Vector Store IDs (breaking change) (#3253)
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 35s
Pre-commit / pre-commit (push) Successful in 1m15s

# What does this PR do?
This change migrates the VectorDB id generation to Vector Stores.

This is a breaking change for **_some users_** that may have application
code using the `vector_db_id` parameter in the request of the VectorDB
protocol instead of the `VectorDB.identifier` in the response.

By default we will now create a Vector Store every time we register a
VectorDB. The caveat with this approach is that this maps the
`vector_db_id` → `vector_store.name`. This is a reasonable tradeoff to
transition users towards OpenAI Vector Stores.

As an added benefit, registering VectorDBs will result in them appearing
in the VectorStores admin UI.

### Why?
This PR makes the `POST` API call to `/v1/vector-dbs` swap the
`vector_db_id` parameter in the **request body** into the VectorStore's
name field and sets the `vector_db_id` to the generated vector store id
(e.g., `vs_038247dd-4bbb-4dbb-a6be-d5ecfd46cfdb`).

That means that users would have to do something like follows in their
application code:

```python
res = client.vector_dbs.register(
    vector_db_id='my-vector-db-id', 
    embedding_model='ollama/all-minilm:l6-v2', 
    embedding_dimension=384,
)
vector_db_id = res.identifier
```

And then the rest of their code would behave, including `VectorIO`'s
insert protocol using `vector_db_id` in the request.

An alternative implementation would be to just delete the `vector_db_id`
parameter in `VectorDB` but the end result would still require users
having to write `vector_db_id = res.identifier` since
`VectorStores.create()` generates the ID for you.

So this approach felt the easiest way to migrate users towards
VectorStores (subsequent PRs will be added to trigger `files.create()`
and `vector_stores.files.create()`).

## Test Plan
Unit tests and integration tests have been added.

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Arceo 2025-09-05 07:40:34 -06:00 committed by GitHub
parent 64b2977162
commit e2fe39aee1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 209 additions and 49 deletions

View file

@ -52,7 +52,6 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
provider_vector_db_id: str | None = None, provider_vector_db_id: str | None = None,
vector_db_name: str | None = None, vector_db_name: str | None = None,
) -> VectorDB: ) -> VectorDB:
provider_vector_db_id = provider_vector_db_id or vector_db_id
if provider_id is None: if provider_id is None:
if len(self.impls_by_provider_id) > 0: if len(self.impls_by_provider_id) > 0:
provider_id = list(self.impls_by_provider_id.keys())[0] provider_id = list(self.impls_by_provider_id.keys())[0]
@ -69,14 +68,33 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding) raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
if "embedding_dimension" not in model.metadata: if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension") raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
provider = self.impls_by_provider_id[provider_id]
logger.warning(
"VectorDB is being deprecated in future releases in favor of VectorStore. Please migrate your usage accordingly."
)
vector_store = await provider.openai_create_vector_store(
name=vector_db_name or vector_db_id,
embedding_model=embedding_model,
embedding_dimension=model.metadata["embedding_dimension"],
provider_id=provider_id,
provider_vector_db_id=provider_vector_db_id,
)
vector_store_id = vector_store.id
actual_provider_vector_db_id = provider_vector_db_id or vector_store_id
logger.warning(
f"Ignoring vector_db_id {vector_db_id} and using vector_store_id {vector_store_id} instead. Setting VectorDB {vector_db_id} to VectorDB.vector_db_name"
)
vector_db_data = { vector_db_data = {
"identifier": vector_db_id, "identifier": vector_store_id,
"type": ResourceType.vector_db.value, "type": ResourceType.vector_db.value,
"provider_id": provider_id, "provider_id": provider_id,
"provider_resource_id": provider_vector_db_id, "provider_resource_id": actual_provider_vector_db_id,
"embedding_model": embedding_model, "embedding_model": embedding_model,
"embedding_dimension": model.metadata["embedding_dimension"], "embedding_dimension": model.metadata["embedding_dimension"],
"vector_db_name": vector_db_name, "vector_db_name": vector_store.name,
} }
vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data) vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data)
await self.register_object(vector_db) await self.register_object(vector_db)

View file

@ -47,34 +47,45 @@ def client_with_empty_registry(client_with_models):
def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension): def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension):
# Register a memory bank first vector_db_name = "test_vector_db"
vector_db_id = "test_vector_db" register_response = client_with_empty_registry.vector_dbs.register(
client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_name,
vector_db_id=vector_db_id,
embedding_model=embedding_model_id, embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
) )
actual_vector_db_id = register_response.identifier
# Retrieve the memory bank and validate its properties # Retrieve the memory bank and validate its properties
response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=vector_db_id) response = client_with_empty_registry.vector_dbs.retrieve(vector_db_id=actual_vector_db_id)
assert response is not None assert response is not None
assert response.identifier == vector_db_id assert response.identifier == actual_vector_db_id
assert response.embedding_model == embedding_model_id assert response.embedding_model == embedding_model_id
assert response.provider_resource_id == vector_db_id assert response.identifier.startswith("vs_")
def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension): def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension):
vector_db_id = "test_vector_db" vector_db_name = "test_vector_db"
client_with_empty_registry.vector_dbs.register( response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id, vector_db_id=vector_db_name,
embedding_model=embedding_model_id, embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
) )
vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] actual_vector_db_id = response.identifier
assert vector_dbs_after_register == [vector_db_id] assert actual_vector_db_id.startswith("vs_")
assert actual_vector_db_id != vector_db_name
client_with_empty_registry.vector_dbs.unregister(vector_db_id=vector_db_id) vector_dbs_after_register = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_dbs_after_register == [actual_vector_db_id]
vector_stores = client_with_empty_registry.vector_stores.list()
assert len(vector_stores.data) == 1
vector_store = vector_stores.data[0]
assert vector_store.id == actual_vector_db_id
assert vector_store.name == vector_db_name
client_with_empty_registry.vector_dbs.unregister(vector_db_id=actual_vector_db_id)
vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert len(vector_dbs) == 0 assert len(vector_dbs) == 0
@ -91,20 +102,22 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe
], ],
) )
def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case): def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case):
vector_db_id = "test_vector_db" vector_db_name = "test_vector_db"
client_with_empty_registry.vector_dbs.register( register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id, vector_db_id=vector_db_name,
embedding_model=embedding_model_id, embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
) )
actual_vector_db_id = register_response.identifier
client_with_empty_registry.vector_io.insert( client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
chunks=sample_chunks, chunks=sample_chunks,
) )
response = client_with_empty_registry.vector_io.query( response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
query="What is the capital of France?", query="What is the capital of France?",
) )
assert response is not None assert response is not None
@ -113,7 +126,7 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
query, expected_doc_id = test_case query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query( response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
query=query, query=query,
) )
assert response is not None assert response is not None
@ -128,13 +141,15 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
"remote::qdrant": {"score_threshold": -1.0}, "remote::qdrant": {"score_threshold": -1.0},
"inline::qdrant": {"score_threshold": -1.0}, "inline::qdrant": {"score_threshold": -1.0},
} }
vector_db_id = "test_precomputed_embeddings_db" vector_db_name = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register( register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id, vector_db_id=vector_db_name,
embedding_model=embedding_model_id, embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
) )
actual_vector_db_id = register_response.identifier
chunks_with_embeddings = [ chunks_with_embeddings = [
Chunk( Chunk(
content="This is a test chunk with precomputed embedding.", content="This is a test chunk with precomputed embedding.",
@ -144,13 +159,13 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
] ]
client_with_empty_registry.vector_io.insert( client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
chunks=chunks_with_embeddings, chunks=chunks_with_embeddings,
) )
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0] provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query( response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
query="precomputed embedding test", query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None), params=vector_io_provider_params_dict.get(provider, None),
) )
@ -173,13 +188,15 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
"remote::qdrant": {"score_threshold": 0.0}, "remote::qdrant": {"score_threshold": 0.0},
"inline::qdrant": {"score_threshold": 0.0}, "inline::qdrant": {"score_threshold": 0.0},
} }
vector_db_id = "test_precomputed_embeddings_db" vector_db_name = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register( register_response = client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id, vector_db_id=vector_db_name,
embedding_model=embedding_model_id, embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
) )
actual_vector_db_id = register_response.identifier
chunks_with_embeddings = [ chunks_with_embeddings = [
Chunk( Chunk(
content="duplicate", content="duplicate",
@ -189,13 +206,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
] ]
client_with_empty_registry.vector_io.insert( client_with_empty_registry.vector_io.insert(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
chunks=chunks_with_embeddings, chunks=chunks_with_embeddings,
) )
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0] provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query( response = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id, vector_db_id=actual_vector_db_id,
query="duplicate", query="duplicate",
params=vector_io_provider_params_dict.get(provider, None), params=vector_io_provider_params_dict.get(provider, None),
) )

View file

@ -146,6 +146,20 @@ class VectorDBImpl(Impl):
async def unregister_vector_db(self, vector_db_id: str): async def unregister_vector_db(self, vector_db_id: str):
return vector_db_id return vector_db_id
async def openai_create_vector_store(self, **kwargs):
import time
import uuid
from llama_stack.apis.vector_io.vector_io import VectorStoreFileCounts, VectorStoreObject
vector_store_id = kwargs.get("provider_vector_db_id") or f"vs_{uuid.uuid4()}"
return VectorStoreObject(
id=vector_store_id,
name=kwargs.get("name", vector_store_id),
created_at=int(time.time()),
file_counts=VectorStoreFileCounts(completed=0, cancelled=0, failed=0, in_progress=0, total=0),
)
async def test_models_routing_table(cached_disk_dist_registry): async def test_models_routing_table(cached_disk_dist_registry):
table = ModelsRoutingTable({"test_provider": InferenceImpl()}, cached_disk_dist_registry, {}) table = ModelsRoutingTable({"test_provider": InferenceImpl()}, cached_disk_dist_registry, {})
@ -247,17 +261,21 @@ async def test_vectordbs_routing_table(cached_disk_dist_registry):
) )
# Register multiple vector databases and verify listing # Register multiple vector databases and verify listing
await table.register_vector_db(vector_db_id="test-vectordb", embedding_model="test_provider/test-model") vdb1 = await table.register_vector_db(vector_db_id="test-vectordb", embedding_model="test_provider/test-model")
await table.register_vector_db(vector_db_id="test-vectordb-2", embedding_model="test_provider/test-model") vdb2 = await table.register_vector_db(vector_db_id="test-vectordb-2", embedding_model="test_provider/test-model")
vector_dbs = await table.list_vector_dbs() vector_dbs = await table.list_vector_dbs()
assert len(vector_dbs.data) == 2 assert len(vector_dbs.data) == 2
vector_db_ids = {v.identifier for v in vector_dbs.data} vector_db_ids = {v.identifier for v in vector_dbs.data}
assert "test-vectordb" in vector_db_ids assert vdb1.identifier in vector_db_ids
assert "test-vectordb-2" in vector_db_ids assert vdb2.identifier in vector_db_ids
await table.unregister_vector_db(vector_db_id="test-vectordb") # Verify they have UUID-based identifiers
await table.unregister_vector_db(vector_db_id="test-vectordb-2") assert vdb1.identifier.startswith("vs_")
assert vdb2.identifier.startswith("vs_")
await table.unregister_vector_db(vector_db_id=vdb1.identifier)
await table.unregister_vector_db(vector_db_id=vdb2.identifier)
vector_dbs = await table.list_vector_dbs() vector_dbs = await table.list_vector_dbs()
assert len(vector_dbs.data) == 0 assert len(vector_dbs.data) == 0

View file

@ -7,6 +7,7 @@
# Unit tests for the routing tables vector_dbs # Unit tests for the routing tables vector_dbs
import time import time
import uuid
from unittest.mock import AsyncMock from unittest.mock import AsyncMock
import pytest import pytest
@ -34,6 +35,7 @@ from tests.unit.distribution.routers.test_routing_tables import Impl, InferenceI
class VectorDBImpl(Impl): class VectorDBImpl(Impl):
def __init__(self): def __init__(self):
super().__init__(Api.vector_io) super().__init__(Api.vector_io)
self.vector_stores = {}
async def register_vector_db(self, vector_db: VectorDB): async def register_vector_db(self, vector_db: VectorDB):
return vector_db return vector_db
@ -114,8 +116,35 @@ class VectorDBImpl(Impl):
async def openai_delete_vector_store_file(self, vector_store_id, file_id): async def openai_delete_vector_store_file(self, vector_store_id, file_id):
return VectorStoreFileDeleteResponse(id=file_id, deleted=True) return VectorStoreFileDeleteResponse(id=file_id, deleted=True)
async def openai_create_vector_store(
self,
name=None,
embedding_model=None,
embedding_dimension=None,
provider_id=None,
provider_vector_db_id=None,
**kwargs,
):
vector_store_id = provider_vector_db_id or f"vs_{uuid.uuid4()}"
vector_store = VectorStoreObject(
id=vector_store_id,
name=name or vector_store_id,
created_at=int(time.time()),
file_counts=VectorStoreFileCounts(completed=0, cancelled=0, failed=0, in_progress=0, total=0),
)
self.vector_stores[vector_store_id] = vector_store
return vector_store
async def openai_list_vector_stores(self, **kwargs):
from llama_stack.apis.vector_io.vector_io import VectorStoreListResponse
return VectorStoreListResponse(
data=list(self.vector_stores.values()), has_more=False, first_id=None, last_id=None
)
async def test_vectordbs_routing_table(cached_disk_dist_registry): async def test_vectordbs_routing_table(cached_disk_dist_registry):
n = 10
table = VectorDBsRoutingTable({"test_provider": VectorDBImpl()}, cached_disk_dist_registry, {}) table = VectorDBsRoutingTable({"test_provider": VectorDBImpl()}, cached_disk_dist_registry, {})
await table.initialize() await table.initialize()
@ -129,22 +158,98 @@ async def test_vectordbs_routing_table(cached_disk_dist_registry):
) )
# Register multiple vector databases and verify listing # Register multiple vector databases and verify listing
await table.register_vector_db(vector_db_id="test-vectordb", embedding_model="test-model") vdb_dict = {}
await table.register_vector_db(vector_db_id="test-vectordb-2", embedding_model="test-model") for i in range(n):
vdb_dict[i] = await table.register_vector_db(vector_db_id=f"test-vectordb-{i}", embedding_model="test-model")
vector_dbs = await table.list_vector_dbs() vector_dbs = await table.list_vector_dbs()
assert len(vector_dbs.data) == 2 assert len(vector_dbs.data) == len(vdb_dict)
vector_db_ids = {v.identifier for v in vector_dbs.data} vector_db_ids = {v.identifier for v in vector_dbs.data}
assert "test-vectordb" in vector_db_ids for k in vdb_dict:
assert "test-vectordb-2" in vector_db_ids assert vdb_dict[k].identifier in vector_db_ids
for k in vdb_dict:
await table.unregister_vector_db(vector_db_id="test-vectordb") await table.unregister_vector_db(vector_db_id=vdb_dict[k].identifier)
await table.unregister_vector_db(vector_db_id="test-vectordb-2")
vector_dbs = await table.list_vector_dbs() vector_dbs = await table.list_vector_dbs()
assert len(vector_dbs.data) == 0 assert len(vector_dbs.data) == 0
async def test_vector_db_and_vector_store_id_mapping(cached_disk_dist_registry):
n = 10
impl = VectorDBImpl()
table = VectorDBsRoutingTable({"test_provider": impl}, cached_disk_dist_registry, {})
await table.initialize()
m_table = ModelsRoutingTable({"test_provider": InferenceImpl()}, cached_disk_dist_registry, {})
await m_table.initialize()
await m_table.register_model(
model_id="test-model",
provider_id="test_provider",
metadata={"embedding_dimension": 128},
model_type=ModelType.embedding,
)
vdb_dict = {}
for i in range(n):
vdb_dict[i] = await table.register_vector_db(vector_db_id=f"test-vectordb-{i}", embedding_model="test-model")
vector_dbs = await table.list_vector_dbs()
vector_db_ids = {v.identifier for v in vector_dbs.data}
vector_stores = await impl.openai_list_vector_stores()
vector_store_ids = {v.id for v in vector_stores.data}
assert vector_db_ids == vector_store_ids, (
f"Vector DB IDs {vector_db_ids} don't match vector store IDs {vector_store_ids}"
)
for vector_store in vector_stores.data:
vector_db = await table.get_vector_db(vector_store.id)
assert vector_store.name == vector_db.vector_db_name, (
f"Vector store name {vector_store.name} doesn't match vector store ID {vector_store.id}"
)
for vector_db_id in vector_db_ids:
await table.unregister_vector_db(vector_db_id)
assert len((await table.list_vector_dbs()).data) == 0
async def test_vector_db_id_becomes_vector_store_name(cached_disk_dist_registry):
impl = VectorDBImpl()
table = VectorDBsRoutingTable({"test_provider": impl}, cached_disk_dist_registry, {})
await table.initialize()
m_table = ModelsRoutingTable({"test_provider": InferenceImpl()}, cached_disk_dist_registry, {})
await m_table.initialize()
await m_table.register_model(
model_id="test-model",
provider_id="test_provider",
metadata={"embedding_dimension": 128},
model_type=ModelType.embedding,
)
user_provided_id = "my-custom-vector-db"
await table.register_vector_db(vector_db_id=user_provided_id, embedding_model="test-model")
vector_stores = await impl.openai_list_vector_stores()
assert len(vector_stores.data) == 1
vector_store = vector_stores.data[0]
assert vector_store.name == user_provided_id
assert vector_store.id.startswith("vs_")
assert vector_store.id != user_provided_id
vector_dbs = await table.list_vector_dbs()
assert len(vector_dbs.data) == 1
assert vector_dbs.data[0].identifier == vector_store.id
await table.unregister_vector_db(vector_store.id)
async def test_openai_vector_stores_routing_table_roles(cached_disk_dist_registry): async def test_openai_vector_stores_routing_table_roles(cached_disk_dist_registry):
impl = VectorDBImpl() impl = VectorDBImpl()
impl.openai_retrieve_vector_store = AsyncMock(return_value="OK") impl.openai_retrieve_vector_store = AsyncMock(return_value="OK")
@ -164,7 +269,8 @@ async def test_openai_vector_stores_routing_table_roles(cached_disk_dist_registr
authorized_user = User(principal="alice", attributes={"roles": [authorized_team]}) authorized_user = User(principal="alice", attributes={"roles": [authorized_team]})
with request_provider_data_context({}, authorized_user): with request_provider_data_context({}, authorized_user):
_ = await table.register_vector_db(vector_db_id="vs1", embedding_model="test-model") registered_vdb = await table.register_vector_db(vector_db_id="vs1", embedding_model="test-model")
authorized_table = registered_vdb.identifier # Use the actual generated ID
# Authorized reader # Authorized reader
with request_provider_data_context({}, authorized_user): with request_provider_data_context({}, authorized_user):
@ -227,7 +333,8 @@ async def test_openai_vector_stores_routing_table_actions(cached_disk_dist_regis
) )
with request_provider_data_context({}, admin_user): with request_provider_data_context({}, admin_user):
await table.register_vector_db(vector_db_id=vector_db_id, embedding_model="test-model") registered_vdb = await table.register_vector_db(vector_db_id=vector_db_id, embedding_model="test-model")
vector_db_id = registered_vdb.identifier # Use the actual generated ID
read_methods = [ read_methods = [
(table.openai_retrieve_vector_store, (vector_db_id,), {}), (table.openai_retrieve_vector_store, (vector_db_id,), {}),