rename UserDefinedToolDef to ToolDef

This commit is contained in:
Dinesh Yeduguru 2025-01-07 09:14:26 -08:00
parent db0b2a60c1
commit e3775eb6f6
8 changed files with 180 additions and 322 deletions

View file

@ -36,7 +36,7 @@ from llama_stack.apis.inference import (
)
from llama_stack.apis.memory import MemoryBank
from llama_stack.apis.safety import SafetyViolation
from llama_stack.apis.tools import UserDefinedToolDef
from llama_stack.apis.tools import ToolDef
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@ -157,7 +157,7 @@ class AgentConfigCommon(BaseModel):
input_shields: Optional[List[str]] = Field(default_factory=list)
output_shields: Optional[List[str]] = Field(default_factory=list)
tools: Optional[List[AgentTool]] = Field(default_factory=list)
client_tools: Optional[List[UserDefinedToolDef]] = Field(default_factory=list)
client_tools: Optional[List[ToolDef]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json

View file

@ -48,30 +48,16 @@ class Tool(Resource):
@json_schema_type
class UserDefinedToolDef(BaseModel):
type: Literal["user_defined"] = "user_defined"
class ToolDef(BaseModel):
name: str
description: str
parameters: List[ToolParameter]
metadata: Dict[str, Any]
description: Optional[str] = None
parameters: Optional[List[ToolParameter]] = None
metadata: Optional[Dict[str, Any]] = None
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
@json_schema_type
class BuiltInToolDef(BaseModel):
type: Literal["built_in"] = "built_in"
built_in_type: BuiltinTool
metadata: Optional[Dict[str, Any]] = None
ToolDef = register_schema(
Annotated[Union[UserDefinedToolDef, BuiltInToolDef], Field(discriminator="type")],
name="ToolDef",
)
@json_schema_type
class MCPToolGroupDef(BaseModel):
"""
@ -100,7 +86,7 @@ ToolGroupDef = register_schema(
@json_schema_type
class ToolGroupInput(BaseModel):
tool_group_id: str
tool_group: ToolGroupDef
tool_group_def: ToolGroupDef
provider_id: Optional[str] = None
@ -127,7 +113,7 @@ class ToolGroups(Protocol):
async def register_tool_group(
self,
tool_group_id: str,
tool_group: ToolGroupDef,
tool_group_def: ToolGroupDef,
provider_id: Optional[str] = None,
) -> None:
"""Register a tool group"""

View file

@ -27,15 +27,12 @@ from llama_stack.apis.scoring_functions import (
)
from llama_stack.apis.shields import Shield, Shields
from llama_stack.apis.tools import (
BuiltInToolDef,
MCPToolGroupDef,
Tool,
ToolGroup,
ToolGroupDef,
ToolGroups,
ToolHost,
ToolPromptFormat,
UserDefinedToolDef,
UserDefinedToolGroupDef,
)
from llama_stack.distribution.datatypes import (
@ -514,7 +511,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
async def register_tool_group(
self,
tool_group_id: str,
tool_group: ToolGroupDef,
tool_group_def: ToolGroupDef,
provider_id: Optional[str] = None,
) -> None:
tools = []
@ -528,47 +525,31 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
provider_id = list(self.impls_by_provider_id.keys())[0]
# parse tool group to the type if dict
tool_group = TypeAdapter(ToolGroupDef).validate_python(tool_group)
if isinstance(tool_group, MCPToolGroupDef):
tool_group_def = TypeAdapter(ToolGroupDef).validate_python(tool_group_def)
if isinstance(tool_group_def, MCPToolGroupDef):
tool_defs = await self.impls_by_provider_id[provider_id].discover_tools(
tool_group
tool_group_def
)
tool_host = ToolHost.model_context_protocol
elif isinstance(tool_group, UserDefinedToolGroupDef):
tool_defs = tool_group.tools
elif isinstance(tool_group_def, UserDefinedToolGroupDef):
tool_defs = tool_group_def.tools
else:
raise ValueError(f"Unknown tool group: {tool_group}")
raise ValueError(f"Unknown tool group: {tool_group_def}")
for tool_def in tool_defs:
if isinstance(tool_def, UserDefinedToolDef):
tools.append(
Tool(
identifier=tool_def.name,
tool_group=tool_group_id,
description=tool_def.description,
parameters=tool_def.parameters,
provider_id=provider_id,
tool_prompt_format=tool_def.tool_prompt_format,
provider_resource_id=tool_def.name,
metadata=tool_def.metadata,
tool_host=tool_host,
)
)
elif isinstance(tool_def, BuiltInToolDef):
tools.append(
Tool(
identifier=tool_def.built_in_type.value,
tool_group=tool_group_id,
built_in_type=tool_def.built_in_type,
description="",
parameters=[],
provider_id=provider_id,
tool_prompt_format=ToolPromptFormat.json,
provider_resource_id=tool_def.built_in_type.value,
metadata=tool_def.metadata,
tool_host=tool_host,
)
tools.append(
Tool(
identifier=tool_def.name,
tool_group=tool_group_id,
description=tool_def.description or "",
parameters=tool_def.parameters or [],
provider_id=provider_id,
tool_prompt_format=tool_def.tool_prompt_format,
provider_resource_id=tool_def.name,
metadata=tool_def.metadata,
tool_host=tool_host,
)
)
for tool in tools:
existing_tool = await self.get_tool(tool.identifier)
# Compare existing and new object if one exists

View file

@ -387,7 +387,7 @@ class ChatAgent(ShieldRunnerMixin):
)
)
extra_args = tool_args.get("memory", {})
args = {
tool_args = {
# Query memory with the last message's content
"query": input_messages[-1],
**extra_args,
@ -396,8 +396,8 @@ class ChatAgent(ShieldRunnerMixin):
session_info = await self.storage.get_session_info(session_id)
# if the session has a memory bank id, let the memory tool use it
if session_info.memory_bank_id:
args["memory_bank_id"] = session_info.memory_bank_id
serialized_args = tracing.serialize_value(args)
tool_args["memory_bank_id"] = session_info.memory_bank_id
serialized_args = tracing.serialize_value(tool_args)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
@ -416,7 +416,7 @@ class ChatAgent(ShieldRunnerMixin):
)
result = await self.tool_runtime_api.invoke_tool(
tool_name="memory",
args=args,
args=tool_args,
)
yield AgentTurnResponseStreamChunk(
@ -482,11 +482,7 @@ class ChatAgent(ShieldRunnerMixin):
async for chunk in await self.inference_api.chat_completion(
self.agent_config.model,
input_messages,
tools=[
tool
for tool in tool_defs.values()
if tool.tool_name != "memory"
],
tools=[tool for tool in tool_defs.values()],
tool_prompt_format=self.agent_config.tool_prompt_format,
stream=True,
sampling_params=sampling_params,
@ -728,10 +724,17 @@ class ChatAgent(ShieldRunnerMixin):
continue
tool_def = await self.tool_groups_api.get_tool(tool_name)
if tool_def is None:
raise ValueError(f"Tool {tool_name} not found")
if tool_def.built_in_type:
ret[tool_def.built_in_type] = ToolDefinition(
tool_name=tool_def.built_in_type
if tool_def.identifier.startswith("builtin::"):
built_in_type = tool_def.identifier[len("builtin::") :]
if built_in_type == "web_search":
built_in_type = "brave_search"
if built_in_type not in BuiltinTool.__members__:
raise ValueError(f"Unknown built-in tool: {built_in_type}")
ret[built_in_type] = ToolDefinition(
tool_name=BuiltinTool(built_in_type)
)
continue
@ -759,52 +762,52 @@ class ChatAgent(ShieldRunnerMixin):
tool_defs: Dict[str, ToolDefinition],
) -> None:
memory_tool = tool_defs.get("memory", None)
code_interpreter_tool = tool_defs.get(BuiltinTool.code_interpreter, None)
if documents:
content_items = []
url_items = []
pattern = re.compile("^(https?://|file://|data:)")
for d in documents:
if isinstance(d.content, URL):
url_items.append(d.content)
elif pattern.match(d.content):
url_items.append(URL(uri=d.content))
else:
content_items.append(d)
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
if code_interpreter_tool:
for c in content_items:
temp_file_path = os.path.join(
self.tempdir, f"{make_random_string()}.txt"
)
with open(temp_file_path, "w") as temp_file:
temp_file.write(c.content)
url_items.append(URL(uri=f"file://{temp_file_path}"))
if memory_tool and code_interpreter_tool:
# if both memory and code_interpreter are available, we download the URLs
# and attach the data to the last message.
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
# Since memory is present, add all the data to the memory bank
await self.add_to_session_memory_bank(session_id, documents)
elif code_interpreter_tool:
# if only code_interpreter is available, we download the URLs to a tempdir
# and attach the path to them as a message to inference with the
# assumption that the model invokes the code_interpreter tool with the path
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
elif memory_tool:
# if only memory is available, we load the data from the URLs and content items to the memory bank
await self.add_to_session_memory_bank(session_id, documents)
code_interpreter_tool = tool_defs.get("code_interpreter", None)
content_items = []
url_items = []
pattern = re.compile("^(https?://|file://|data:)")
for d in documents:
if isinstance(d.content, URL):
url_items.append(d.content)
elif pattern.match(d.content):
url_items.append(URL(uri=d.content))
else:
# if no memory or code_interpreter tool is available,
# we try to load the data from the URLs and content items as a message to inference
# and add it to the last message's context
input_messages[-1].context = content_items + await load_data_from_urls(
url_items
content_items.append(d)
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
if code_interpreter_tool:
for c in content_items:
temp_file_path = os.path.join(
self.tempdir, f"{make_random_string()}.txt"
)
with open(temp_file_path, "w") as temp_file:
temp_file.write(c.content)
url_items.append(URL(uri=f"file://{temp_file_path}"))
if memory_tool and code_interpreter_tool:
# if both memory and code_interpreter are available, we download the URLs
# and attach the data to the last message.
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
# Since memory is present, add all the data to the memory bank
await self.add_to_session_memory_bank(session_id, documents)
elif code_interpreter_tool:
# if only code_interpreter is available, we download the URLs to a tempdir
# and attach the path to them as a message to inference with the
# assumption that the model invokes the code_interpreter tool with the path
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
elif memory_tool:
# if only memory is available, we load the data from the URLs and content items to the memory bank
await self.add_to_session_memory_bank(session_id, documents)
else:
# if no memory or code_interpreter tool is available,
# we try to load the data from the URLs and content items as a message to inference
# and add it to the last message's context
input_messages[-1].context = "\n".join(
[doc.content for doc in content_items]
+ await load_data_from_urls(url_items)
)
async def _ensure_memory_bank(self, session_id: str) -> str:
session_info = await self.storage.get_session_info(session_id)
@ -909,7 +912,10 @@ async def execute_tool_call_maybe(
tool_call = message.tool_calls[0]
name = tool_call.tool_name
if isinstance(name, BuiltinTool):
name = name.value
if name == BuiltinTool.brave_search:
name = "builtin::web_search"
else:
name = "builtin::" + name.value
result = await tool_runtime_api.invoke_tool(
tool_name=name,
args=dict(

View file

@ -30,8 +30,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
pass
async def register_tool(self, tool: Tool):
if tool.identifier != "code_interpreter":
raise ValueError(f"Tool identifier {tool.identifier} is not supported")
pass
async def unregister_tool(self, tool_id: str) -> None:
return