mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 00:12:24 +00:00
rename UserDefinedToolDef to ToolDef
This commit is contained in:
parent
db0b2a60c1
commit
e3775eb6f6
8 changed files with 180 additions and 322 deletions
|
|
@ -387,7 +387,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
extra_args = tool_args.get("memory", {})
|
||||
args = {
|
||||
tool_args = {
|
||||
# Query memory with the last message's content
|
||||
"query": input_messages[-1],
|
||||
**extra_args,
|
||||
|
|
@ -396,8 +396,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
session_info = await self.storage.get_session_info(session_id)
|
||||
# if the session has a memory bank id, let the memory tool use it
|
||||
if session_info.memory_bank_id:
|
||||
args["memory_bank_id"] = session_info.memory_bank_id
|
||||
serialized_args = tracing.serialize_value(args)
|
||||
tool_args["memory_bank_id"] = session_info.memory_bank_id
|
||||
serialized_args = tracing.serialize_value(tool_args)
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepProgressPayload(
|
||||
|
|
@ -416,7 +416,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name="memory",
|
||||
args=args,
|
||||
args=tool_args,
|
||||
)
|
||||
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
|
|
@ -482,11 +482,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
tools=[
|
||||
tool
|
||||
for tool in tool_defs.values()
|
||||
if tool.tool_name != "memory"
|
||||
],
|
||||
tools=[tool for tool in tool_defs.values()],
|
||||
tool_prompt_format=self.agent_config.tool_prompt_format,
|
||||
stream=True,
|
||||
sampling_params=sampling_params,
|
||||
|
|
@ -728,10 +724,17 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
continue
|
||||
|
||||
tool_def = await self.tool_groups_api.get_tool(tool_name)
|
||||
if tool_def is None:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
if tool_def.built_in_type:
|
||||
ret[tool_def.built_in_type] = ToolDefinition(
|
||||
tool_name=tool_def.built_in_type
|
||||
if tool_def.identifier.startswith("builtin::"):
|
||||
built_in_type = tool_def.identifier[len("builtin::") :]
|
||||
if built_in_type == "web_search":
|
||||
built_in_type = "brave_search"
|
||||
if built_in_type not in BuiltinTool.__members__:
|
||||
raise ValueError(f"Unknown built-in tool: {built_in_type}")
|
||||
ret[built_in_type] = ToolDefinition(
|
||||
tool_name=BuiltinTool(built_in_type)
|
||||
)
|
||||
continue
|
||||
|
||||
|
|
@ -759,52 +762,52 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
tool_defs: Dict[str, ToolDefinition],
|
||||
) -> None:
|
||||
memory_tool = tool_defs.get("memory", None)
|
||||
code_interpreter_tool = tool_defs.get(BuiltinTool.code_interpreter, None)
|
||||
if documents:
|
||||
content_items = []
|
||||
url_items = []
|
||||
pattern = re.compile("^(https?://|file://|data:)")
|
||||
for d in documents:
|
||||
if isinstance(d.content, URL):
|
||||
url_items.append(d.content)
|
||||
elif pattern.match(d.content):
|
||||
url_items.append(URL(uri=d.content))
|
||||
else:
|
||||
content_items.append(d)
|
||||
|
||||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(
|
||||
self.tempdir, f"{make_random_string()}.txt"
|
||||
)
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
||||
if memory_tool and code_interpreter_tool:
|
||||
# if both memory and code_interpreter are available, we download the URLs
|
||||
# and attach the data to the last message.
|
||||
msg = await attachment_message(self.tempdir, url_items)
|
||||
input_messages.append(msg)
|
||||
# Since memory is present, add all the data to the memory bank
|
||||
await self.add_to_session_memory_bank(session_id, documents)
|
||||
elif code_interpreter_tool:
|
||||
# if only code_interpreter is available, we download the URLs to a tempdir
|
||||
# and attach the path to them as a message to inference with the
|
||||
# assumption that the model invokes the code_interpreter tool with the path
|
||||
msg = await attachment_message(self.tempdir, url_items)
|
||||
input_messages.append(msg)
|
||||
elif memory_tool:
|
||||
# if only memory is available, we load the data from the URLs and content items to the memory bank
|
||||
await self.add_to_session_memory_bank(session_id, documents)
|
||||
code_interpreter_tool = tool_defs.get("code_interpreter", None)
|
||||
content_items = []
|
||||
url_items = []
|
||||
pattern = re.compile("^(https?://|file://|data:)")
|
||||
for d in documents:
|
||||
if isinstance(d.content, URL):
|
||||
url_items.append(d.content)
|
||||
elif pattern.match(d.content):
|
||||
url_items.append(URL(uri=d.content))
|
||||
else:
|
||||
# if no memory or code_interpreter tool is available,
|
||||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = content_items + await load_data_from_urls(
|
||||
url_items
|
||||
content_items.append(d)
|
||||
|
||||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(
|
||||
self.tempdir, f"{make_random_string()}.txt"
|
||||
)
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
||||
if memory_tool and code_interpreter_tool:
|
||||
# if both memory and code_interpreter are available, we download the URLs
|
||||
# and attach the data to the last message.
|
||||
msg = await attachment_message(self.tempdir, url_items)
|
||||
input_messages.append(msg)
|
||||
# Since memory is present, add all the data to the memory bank
|
||||
await self.add_to_session_memory_bank(session_id, documents)
|
||||
elif code_interpreter_tool:
|
||||
# if only code_interpreter is available, we download the URLs to a tempdir
|
||||
# and attach the path to them as a message to inference with the
|
||||
# assumption that the model invokes the code_interpreter tool with the path
|
||||
msg = await attachment_message(self.tempdir, url_items)
|
||||
input_messages.append(msg)
|
||||
elif memory_tool:
|
||||
# if only memory is available, we load the data from the URLs and content items to the memory bank
|
||||
await self.add_to_session_memory_bank(session_id, documents)
|
||||
else:
|
||||
# if no memory or code_interpreter tool is available,
|
||||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = "\n".join(
|
||||
[doc.content for doc in content_items]
|
||||
+ await load_data_from_urls(url_items)
|
||||
)
|
||||
|
||||
async def _ensure_memory_bank(self, session_id: str) -> str:
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
|
|
@ -909,7 +912,10 @@ async def execute_tool_call_maybe(
|
|||
tool_call = message.tool_calls[0]
|
||||
name = tool_call.tool_name
|
||||
if isinstance(name, BuiltinTool):
|
||||
name = name.value
|
||||
if name == BuiltinTool.brave_search:
|
||||
name = "builtin::web_search"
|
||||
else:
|
||||
name = "builtin::" + name.value
|
||||
result = await tool_runtime_api.invoke_tool(
|
||||
tool_name=name,
|
||||
args=dict(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue