feat: Adding support for metadata in RAG insertion and querying

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-05-09 23:38:47 -04:00
parent 473a07f624
commit e50a546bc0
8 changed files with 149 additions and 25 deletions

View file

@ -87,6 +87,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
content,
chunk_size_in_tokens,
chunk_size_in_tokens // 4,
doc.metadata,
)
)
@ -140,19 +141,29 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
)
]
for i, c in enumerate(chunks):
metadata = c.metadata
for i, chunk in enumerate(chunks):
metadata = chunk.metadata
tokens += metadata["token_count"]
if query_config.include_metadata_in_content:
tokens += metadata["metadata_token_count"]
if tokens > query_config.max_tokens_in_context:
log.error(
f"Using {len(picked)} chunks; reached max tokens in context: {tokens}",
)
break
picked.append(
TextContentItem(
text=f"Result {i + 1}:\nDocument_id:{metadata['document_id'][:5]}\nContent: {c.content}\n",
)
)
text_content = f"Result {i + 1}:\n"
if query_config.include_metadata_in_content:
metadata_subset = {
k: v for k, v in metadata.items() if k not in ["token_count", "metadata_token_count"]
}
text_content += f"\nMetadata: {metadata_subset}"
else:
text_content += f"Document_id:{metadata['document_id'][:5]}"
text_content += f"\nContent: {chunk.content}\n"
picked.append(TextContentItem(text=text_content))
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))
picked.append(
TextContentItem(

View file

@ -139,22 +139,27 @@ async def content_from_doc(doc: RAGDocument) -> str:
return interleaved_content_as_str(doc.content)
def make_overlapped_chunks(document_id: str, text: str, window_len: int, overlap_len: int) -> list[Chunk]:
def make_overlapped_chunks(
document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any]
) -> list[Chunk]:
tokenizer = Tokenizer.get_instance()
tokens = tokenizer.encode(text, bos=False, eos=False)
metadata_tokens = tokenizer.encode(str(metadata), bos=False, eos=False)
chunks = []
for i in range(0, len(tokens), window_len - overlap_len):
toks = tokens[i : i + window_len]
chunk = tokenizer.decode(toks)
chunk_metadata = metadata.copy()
chunk_metadata["document_id"] = document_id
chunk_metadata["token_count"] = len(toks)
chunk_metadata["metadata_token_count"] = len(metadata_tokens)
# chunk is a string
chunks.append(
Chunk(
content=chunk,
metadata={
"token_count": len(toks),
"document_id": document_id,
},
metadata=chunk_metadata,
)
)