mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-20 13:58:41 +00:00
Tests pass with Ollama now
This commit is contained in:
parent
a9a041a1de
commit
e51154964f
27 changed files with 83 additions and 65 deletions
|
|
@ -9,8 +9,6 @@ import logging
|
|||
|
||||
from typing import List
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
|
|
|||
|
|
@ -7,13 +7,17 @@
|
|||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from llama_models.llama3.api.datatypes import interleaved_text_media_as_str, Message
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
from .config import CodeScannerConfig
|
||||
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
ALLOWED_CODE_SCANNER_MODEL_IDS = [
|
||||
"CodeScanner",
|
||||
"CodeShield",
|
||||
|
|
@ -48,7 +52,7 @@ class MetaReferenceCodeScannerSafetyImpl(Safety):
|
|||
|
||||
from codeshield.cs import CodeShield
|
||||
|
||||
text = "\n".join([interleaved_text_media_as_str(m.content) for m in messages])
|
||||
text = "\n".join([interleaved_content_as_str(m.content) for m in messages])
|
||||
log.info(f"Running CodeScannerShield on {text[50:]}")
|
||||
result = await CodeShield.scan_code(text)
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from cerebras.cloud.sdk import AsyncCerebras
|
|||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from llama_models.datatypes import CoreModelId
|
|||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from openai import OpenAI
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from fireworks.client import Fireworks
|
|||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
|
|
|
|||
|
|
@ -11,7 +11,6 @@ import httpx
|
|||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from ollama import AsyncClient
|
||||
|
||||
|
|
@ -90,7 +89,7 @@ model_aliases = [
|
|||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2-vision",
|
||||
"llama3.2-vision:latest",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
|
|
|
|||
|
|
@ -83,7 +83,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
|
|
@ -267,7 +267,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from llama_models.datatypes import CoreModelId
|
|||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from together import Together
|
||||
|
|
|
|||
|
|
@ -8,7 +8,6 @@ import logging
|
|||
from typing import AsyncGenerator
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@
|
|||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from PIL import Image as PIL_Image
|
||||
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
|
@ -17,6 +16,9 @@ from .utils import group_chunks
|
|||
|
||||
THIS_DIR = Path(__file__).parent
|
||||
|
||||
with open(THIS_DIR / "pasta.jpeg", "rb") as f:
|
||||
PASTA_IMAGE = f.read()
|
||||
|
||||
|
||||
class TestVisionModelInference:
|
||||
@pytest.mark.asyncio
|
||||
|
|
@ -24,12 +26,12 @@ class TestVisionModelInference:
|
|||
"image, expected_strings",
|
||||
[
|
||||
(
|
||||
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
||||
ImageContentItem(data=PASTA_IMAGE),
|
||||
["spaghetti"],
|
||||
),
|
||||
(
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
ImageContentItem(
|
||||
data=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
|
|
@ -58,7 +60,12 @@ class TestVisionModelInference:
|
|||
model_id=inference_model,
|
||||
messages=[
|
||||
UserMessage(content="You are a helpful assistant."),
|
||||
UserMessage(content=[image, "Describe this image in two sentences."]),
|
||||
UserMessage(
|
||||
content=[
|
||||
image,
|
||||
TextContentItem(text="Describe this image in two sentences."),
|
||||
]
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
sampling_params=SamplingParams(max_tokens=100),
|
||||
|
|
@ -89,8 +96,8 @@ class TestVisionModelInference:
|
|||
)
|
||||
|
||||
images = [
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
ImageContentItem(
|
||||
data=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
|
|
@ -106,7 +113,12 @@ class TestVisionModelInference:
|
|||
messages=[
|
||||
UserMessage(content="You are a helpful assistant."),
|
||||
UserMessage(
|
||||
content=[image, "Describe this image in two sentences."]
|
||||
content=[
|
||||
image,
|
||||
TextContentItem(
|
||||
text="Describe this image in two sentences."
|
||||
),
|
||||
]
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
|
|
|
|||
|
|
@ -7,8 +7,8 @@
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.common.deployment_types import URL
|
||||
from llama_stack.apis.datasets import DatasetInput
|
||||
from llama_stack.apis.models import ModelInput
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from urllib.parse import unquote
|
|||
|
||||
import pandas
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
from llama_stack.apis.common.deployment_types import URL
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||
|
||||
|
|
|
|||
|
|
@ -7,9 +7,11 @@
|
|||
import logging
|
||||
from typing import List
|
||||
|
||||
from llama_models.llama3.api.datatypes import InterleavedTextMedia
|
||||
|
||||
from llama_stack.apis.inference.inference import EmbeddingsResponse, ModelStore
|
||||
from llama_stack.apis.inference import (
|
||||
EmbeddingsResponse,
|
||||
InterleavedContent,
|
||||
ModelStore,
|
||||
)
|
||||
|
||||
EMBEDDING_MODELS = {}
|
||||
|
||||
|
|
@ -23,7 +25,7 @@ class SentenceTransformerEmbeddingMixin:
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embedding_model = self._load_sentence_transformer_model(
|
||||
|
|
|
|||
|
|
@ -93,11 +93,15 @@ def process_chat_completion_response(
|
|||
) -> ChatCompletionResponse:
|
||||
choice = response.choices[0]
|
||||
|
||||
completion_message = formatter.decode_assistant_message_from_content(
|
||||
raw_message = formatter.decode_assistant_message_from_content(
|
||||
text_from_choice(choice), get_stop_reason(choice.finish_reason)
|
||||
)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
completion_message=CompletionMessage(
|
||||
content=raw_message.content,
|
||||
stop_reason=raw_message.stop_reason,
|
||||
tool_calls=raw_message.tool_calls,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import asyncio
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
|
|
@ -21,7 +22,6 @@ from llama_models.llama3.api.datatypes import (
|
|||
RawMediaItem,
|
||||
RawTextItem,
|
||||
Role,
|
||||
ToolChoice,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_models.llama3.prompt_templates import (
|
||||
|
|
@ -47,6 +47,7 @@ from llama_stack.apis.inference import (
|
|||
ResponseFormatType,
|
||||
SystemMessage,
|
||||
TextContentItem,
|
||||
ToolChoice,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
|
|
@ -136,7 +137,7 @@ def request_has_media(request: Union[ChatCompletionRequest, CompletionRequest]):
|
|||
async def localize_image_content(media: ImageContentItem) -> Tuple[bytes, str]:
|
||||
if isinstance(media.data, URL) and media.data.uri.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(media.image.uri)
|
||||
r = await client.get(media.data.uri)
|
||||
content = r.content
|
||||
content_type = r.headers.get("content-type")
|
||||
if content_type:
|
||||
|
|
@ -145,7 +146,7 @@ async def localize_image_content(media: ImageContentItem) -> Tuple[bytes, str]:
|
|||
format = "png"
|
||||
return content, format
|
||||
else:
|
||||
image = PIL_Image.open(media.data)
|
||||
image = PIL_Image.open(io.BytesIO(media.data))
|
||||
return media.data, image.format
|
||||
|
||||
|
||||
|
|
@ -153,7 +154,7 @@ async def convert_image_content_to_url(
|
|||
media: ImageContentItem, download: bool = False, include_format: bool = True
|
||||
) -> str:
|
||||
if isinstance(media.data, URL) and not download:
|
||||
return media.image.uri
|
||||
return media.data.uri
|
||||
|
||||
content, format = await localize_image_content(media)
|
||||
if include_format:
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ import base64
|
|||
import mimetypes
|
||||
import os
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
from llama_stack.apis.common.deployment_types import URL
|
||||
|
||||
|
||||
def data_url_from_file(file_path: str) -> URL:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue