mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
Use huggingface_hub inference client for TGI inference
This commit is contained in:
parent
21bedc1596
commit
e5bcfdac21
6 changed files with 179 additions and 142 deletions
|
@ -248,44 +248,51 @@ llama stack list-distributions
|
|||
```
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
i+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| Distribution ID | Providers | Description |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local | { | Use code from `llama_toolchain` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| remote | { | Point to remote services for all llama stack APIs |
|
||||
| | "inference": "remote", | |
|
||||
| | "safety": "remote", | |
|
||||
| | "agentic_system": "remote", | |
|
||||
| | "memory": "remote" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-ollama | { | Like local, but use ollama for running LLM inference |
|
||||
| | "inference": "remote::ollama", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-plus-fireworks-inference | { | Use Fireworks.ai for running LLM inference |
|
||||
| | "inference": "remote::fireworks", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-plus-together-inference | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| Distribution ID | Providers | Description |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| local | { | Use code from `llama_toolchain` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| remote | { | Point to remote services for all llama stack APIs |
|
||||
| | "inference": "remote", | |
|
||||
| | "safety": "remote", | |
|
||||
| | "agentic_system": "remote", | |
|
||||
| | "memory": "remote" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| local-ollama | { | Like local, but use ollama for running LLM inference |
|
||||
| | "inference": "remote::ollama", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| local-plus-fireworks-inference | { | Use Fireworks.ai for running LLM inference |
|
||||
| | "inference": "remote::fireworks", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| local-plus-together-inference | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
| local-plus-tgi-inference | { | Use TGI (local or with <a href="https://huggingface.co/inference-endpoints/dedicated"> |
|
||||
| | "inference": "remote::tgi", | Hugging Face Inference Endpoints</a>) for running LLM inference |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+-------------------------------------------------------------------------------------------+
|
||||
</pre>
|
||||
|
||||
As you can see above, each “distribution” details the “providers” it is composed of. For example, `local` uses the “meta-reference” provider for inference while local-ollama relies on a different provider (Ollama) for inference. Similarly, you can use Fireworks or Together.AI for running inference as well.
|
||||
|
|
|
@ -58,6 +58,16 @@ def available_distribution_specs() -> List[DistributionSpec]:
|
|||
Api.memory: "meta-reference-faiss",
|
||||
},
|
||||
),
|
||||
DistributionSpec(
|
||||
distribution_id="local-plus-tgi-inference",
|
||||
description="Use TGI for running LLM inference",
|
||||
providers={
|
||||
Api.inference: remote_provider_id("tgi"),
|
||||
Api.safety: "meta-reference",
|
||||
Api.agentic_system: "meta-reference",
|
||||
Api.memory: "meta-reference-faiss",
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -4,12 +4,15 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
||||
from .config import TGIImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
|
||||
from .tgi import TGIInferenceAdapter
|
||||
async def get_adapter_impl(config: TGIImplConfig, _deps):
|
||||
from .tgi import TGIAdapter
|
||||
|
||||
impl = TGIInferenceAdapter(config.url)
|
||||
assert isinstance(
|
||||
config, TGIImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = TGIAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
22
llama_toolchain/inference/adapters/tgi/config.py
Normal file
22
llama_toolchain/inference/adapters/tgi/config.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TGIImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api-inference.huggingface.co",
|
||||
description="The URL for the TGI endpoint",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
default="",
|
||||
description="The HF token for Hugging Face Inference Endpoints",
|
||||
)
|
|
@ -4,63 +4,44 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List
|
||||
|
||||
import httpx
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from huggingface_hub import InferenceClient
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message, StopReason
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from text_generation import Client
|
||||
from llama_toolchain.inference.api import *
|
||||
from llama_toolchain.inference.api.api import ( # noqa: F403
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
)
|
||||
|
||||
from llama_toolchain.inference.api import * # noqa: F403
|
||||
from llama_toolchain.inference.prepare_messages import prepare_messages
|
||||
from .config import TGIImplConfig
|
||||
|
||||
|
||||
SUPPORTED_MODELS = {
|
||||
HF_SUPPORTED_MODELS = {
|
||||
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
}
|
||||
|
||||
|
||||
class TGIInferenceAdapter(Inference):
|
||||
def __init__(self, url: str) -> None:
|
||||
self.url = url.rstrip("/")
|
||||
class TGIAdapter(Inference):
|
||||
|
||||
def __init__(self, config: TGIImplConfig) -> None:
|
||||
self.config = config
|
||||
self.tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(self.tokenizer)
|
||||
self.model = None
|
||||
self.max_tokens = None
|
||||
|
||||
@property
|
||||
def client(self) -> InferenceClient:
|
||||
return InferenceClient(base_url=self.config.url, token=self.config.api_token)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
hf_models = {v: k for k, v in SUPPORTED_MODELS.items()}
|
||||
|
||||
try:
|
||||
print(f"Connecting to TGI server at: {self.url}")
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(f"{self.url}/info")
|
||||
response.raise_for_status()
|
||||
info = response.json()
|
||||
if "model_id" not in info:
|
||||
raise RuntimeError("Missing model_id in model info")
|
||||
if "max_total_tokens" not in info:
|
||||
raise RuntimeError("Missing max_total_tokens in model info")
|
||||
self.max_tokens = info["max_total_tokens"]
|
||||
|
||||
model_id = info["model_id"]
|
||||
if model_id not in hf_models:
|
||||
raise RuntimeError(
|
||||
f"TGI is serving model: {model_id}, use one of the supported models: {','.join(hf_models.keys())}"
|
||||
)
|
||||
|
||||
self.model = hf_models[model_id]
|
||||
except Exception as e:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
raise RuntimeError("Could not connect to TGI server") from e
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
@ -68,15 +49,25 @@ class TGIInferenceAdapter(Inference):
|
|||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _convert_messages(self, messages: List[Message]) -> List[Message]:
|
||||
ret = []
|
||||
def _convert_messages(self, messages: list[Message]) -> List[Message]: # type: ignore
|
||||
tgi_messages = []
|
||||
for message in messages:
|
||||
if message.role == "ipython":
|
||||
role = "tool"
|
||||
else:
|
||||
role = message.role
|
||||
ret.append({"role": role, "content": message.content})
|
||||
return ret
|
||||
tgi_messages.append({"role": role, "content": message.content})
|
||||
|
||||
return tgi_messages
|
||||
|
||||
def resolve_hf_model(self, model_name: str) -> str:
|
||||
model = resolve_model(model_name)
|
||||
assert (
|
||||
model is not None
|
||||
and model.descriptor(shorten_default_variant=True) in HF_SUPPORTED_MODELS
|
||||
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(HF_SUPPORTED_MODELS.keys())}"
|
||||
|
||||
return HF_SUPPORTED_MODELS.get(model.descriptor(shorten_default_variant=True))
|
||||
|
||||
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
|
@ -88,48 +79,34 @@ class TGIInferenceAdapter(Inference):
|
|||
return options
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
messages = prepare_messages(request)
|
||||
|
||||
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||
prompt = self.tokenizer.decode(model_input.tokens)
|
||||
max_new_tokens = min(
|
||||
request.sampling_params.max_tokens or self.max_tokens,
|
||||
self.max_tokens - len(model_input.tokens) - 1,
|
||||
)
|
||||
|
||||
if request.model != self.model:
|
||||
raise ValueError(
|
||||
f"Model mismatch, expected: {self.model}, got: {request.model}"
|
||||
)
|
||||
|
||||
options = self.get_chat_options(request)
|
||||
messages = self._convert_messages(request.messages)
|
||||
|
||||
client = Client(base_url=self.url)
|
||||
if not request.stream:
|
||||
r = client.generate(
|
||||
prompt,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
response = self.client.chat_completion(
|
||||
messages=messages,
|
||||
stream=False,
|
||||
**options,
|
||||
)
|
||||
|
||||
if r.details.finish_reason:
|
||||
if r.details.finish_reason == "stop":
|
||||
stop_reason = None
|
||||
if response.choices[0].finish_reason:
|
||||
if (
|
||||
response.choices[0].finish_reason == "stop_sequence"
|
||||
or response.choices[0].finish_reason == "eos_token"
|
||||
):
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif r.details.finish_reason == "length":
|
||||
elif response.choices[0].finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
else:
|
||||
stop_reason = StopReason.end_of_message
|
||||
else:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||
r.generated_text, stop_reason
|
||||
response.choices[0].message.content,
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -137,24 +114,35 @@ class TGIInferenceAdapter(Inference):
|
|||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
tokens = []
|
||||
|
||||
for response in client.generate_stream(
|
||||
prompt,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**options,
|
||||
for chunk in self.client.chat_completion(
|
||||
messages=messages, stream=True, **options
|
||||
):
|
||||
token_result = response.token
|
||||
if chunk.choices[0].finish_reason:
|
||||
if (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "stop_sequence"
|
||||
) or (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "eos_token"
|
||||
):
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "length"
|
||||
):
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
buffer += token_result.text
|
||||
tokens.append(token_result.id)
|
||||
text = chunk.choices[0].delta.content
|
||||
if text is None:
|
||||
continue
|
||||
|
||||
if not ipython and buffer.startswith("<|python_tag|>"):
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -165,27 +153,25 @@ class TGIInferenceAdapter(Inference):
|
|||
),
|
||||
)
|
||||
)
|
||||
buffer = buffer[len("<|python_tag|>") :]
|
||||
buffer += text
|
||||
continue
|
||||
|
||||
if token_result.text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
else:
|
||||
delta = text
|
||||
|
||||
if stop_reason is None:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
|
@ -193,12 +179,20 @@ class TGIInferenceAdapter(Inference):
|
|||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = self.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
message = self.formatter.decode_assistant_message_from_content(
|
||||
buffer, stop_reason
|
||||
)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
|
|
|
@ -39,8 +39,9 @@ def available_inference_providers() -> List[ProviderSpec]:
|
|||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_id="tgi",
|
||||
pip_packages=["text-generation"],
|
||||
pip_packages=["huggingface_hub"],
|
||||
module="llama_toolchain.inference.adapters.tgi",
|
||||
config_class="llama_toolchain.inference.adapters.tgi.TGIImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue