undo vector_store_id in params

This commit is contained in:
Ashwin Bharambe 2025-10-12 18:48:55 -07:00
parent 33d7119708
commit e6428492e6
11 changed files with 94 additions and 59 deletions

View file

@ -491,13 +491,11 @@ class OpenAICreateVectorStoreRequestWithExtraBody(BaseModel, extra="allow"):
class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="allow"):
"""Request to create a vector store file batch with extra_body support.
:param vector_store_id: The ID of the vector store to create the file batch for
:param file_ids: A list of File IDs that the vector store should use
:param attributes: (Optional) Key-value attributes to store with the files
:param chunking_strategy: (Optional) The chunking strategy used to chunk the file(s). Defaults to auto
"""
vector_store_id: str
file_ids: list[str]
attributes: dict[str, Any] | None = None
chunking_strategy: VectorStoreChunkingStrategy | None = None
@ -849,11 +847,13 @@ class VectorIO(Protocol):
)
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
) -> VectorStoreFileBatchObject:
"""Create a vector store file batch.
Generate an OpenAI-compatible vector store file batch for the given vector store.
:param vector_store_id: The ID of the vector store to create the file batch for.
:returns: A VectorStoreFileBatchObject representing the created file batch.
"""
...

View file

@ -513,6 +513,14 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
# Strip NOT_GIVENs to use the defaults in signature
body = {k: v for k, v in body.items() if v is not NOT_GIVEN}
# Check if there's an unwrapped body parameter among multiple parameters
# (e.g., path param + body param like: vector_store_id: str, params: Annotated[Model, Body(...)])
unwrapped_body_param = None
for param in params_list:
if is_unwrapped_body_param(param.annotation):
unwrapped_body_param = param
break
# Convert parameters to Pydantic models where needed
converted_body = {}
for param_name, param in sig.parameters.items():
@ -522,5 +530,11 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
converted_body[param_name] = value
else:
converted_body[param_name] = convert_to_pydantic(param.annotation, value)
elif unwrapped_body_param and param.name == unwrapped_body_param.name:
# This is the unwrapped body param - construct it from remaining body keys
base_type = get_args(param.annotation)[0]
# Extract only the keys that aren't already used by other params
remaining_keys = {k: v for k, v in body.items() if k not in converted_body}
converted_body[param.name] = base_type(**remaining_keys)
return converted_body

View file

@ -383,13 +383,14 @@ class VectorIORouter(VectorIO):
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
) -> VectorStoreFileBatchObject:
logger.debug(
f"VectorIORouter.openai_create_vector_store_file_batch: {params.vector_store_id}, {len(params.file_ids)} files"
f"VectorIORouter.openai_create_vector_store_file_batch: {vector_store_id}, {len(params.file_ids)} files"
)
provider = await self.routing_table.get_provider_impl(params.vector_store_id)
return await provider.openai_create_vector_store_file_batch(params)
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_create_vector_store_file_batch(vector_store_id, params)
async def openai_retrieve_vector_store_file_batch(
self,

View file

@ -978,10 +978,10 @@ class OpenAIVectorStoreMixin(ABC):
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
) -> VectorStoreFileBatchObject:
"""Create a vector store file batch."""
vector_store_id = params.vector_store_id
if vector_store_id not in self.openai_vector_stores:
raise VectorStoreNotFoundError(vector_store_id)