Introduce Llama stack distributions (#22)

* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
This commit is contained in:
Ashwin Bharambe 2024-08-08 13:38:41 -07:00 committed by GitHub
parent da4645a27a
commit e830814399
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
115 changed files with 5839 additions and 1120 deletions

View file

@ -1,102 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Literal, Optional, Union
from hydra.core.config_store import ConfigStore
from hydra_zen import builds
from llama_models.llama3_1.api.datatypes import CheckpointQuantizationFormat
from pydantic import BaseModel, Field
from strong_typing.schema import json_schema_type
from typing_extensions import Annotated
from .datatypes import QuantizationConfig
@json_schema_type
class ImplType(Enum):
inline = "inline"
remote = "remote"
ollama = "ollama"
@json_schema_type
class CheckpointType(Enum):
pytorch = "pytorch"
huggingface = "huggingface"
@json_schema_type
class PytorchCheckpoint(BaseModel):
checkpoint_type: Literal[CheckpointType.pytorch.value] = (
CheckpointType.pytorch.value
)
checkpoint_dir: str
tokenizer_path: str
model_parallel_size: int
quantization_format: CheckpointQuantizationFormat = (
CheckpointQuantizationFormat.bf16
)
@json_schema_type
class HuggingFaceCheckpoint(BaseModel):
checkpoint_type: Literal[CheckpointType.huggingface.value] = (
CheckpointType.huggingface.value
)
repo_id: str # or model_name ?
model_parallel_size: int
quantization_format: CheckpointQuantizationFormat = (
CheckpointQuantizationFormat.bf16
)
@json_schema_type
class ModelCheckpointConfig(BaseModel):
checkpoint: Annotated[
Union[PytorchCheckpoint, HuggingFaceCheckpoint],
Field(discriminator="checkpoint_type"),
]
@json_schema_type
class InlineImplConfig(BaseModel):
impl_type: Literal[ImplType.inline.value] = ImplType.inline.value
checkpoint_config: ModelCheckpointConfig
quantization: Optional[QuantizationConfig] = None
torch_seed: Optional[int] = None
max_seq_len: int
max_batch_size: int = 1
@json_schema_type
class RemoteImplConfig(BaseModel):
impl_type: Literal[ImplType.remote.value] = ImplType.remote.value
url: str = Field(..., description="The URL of the remote module")
@json_schema_type
class OllamaImplConfig(BaseModel):
impl_type: Literal[ImplType.ollama.value] = ImplType.ollama.value
model: str = Field(..., description="The name of the model in ollama catalog")
url: str = Field(..., description="The URL for the ollama server")
@json_schema_type
class InferenceConfig(BaseModel):
impl_config: Annotated[
Union[InlineImplConfig, RemoteImplConfig, OllamaImplConfig],
Field(discriminator="impl_type"),
]
InferenceHydraConfig = builds(InferenceConfig)
cs = ConfigStore.instance()
cs.store(name="inference_config", node=InferenceHydraConfig)

View file

@ -7,9 +7,9 @@
from enum import Enum
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from llama_models.schema_utils import json_schema_type
from strong_typing.schema import json_schema_type
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_models.llama3_1.api.datatypes import * # noqa: F403

View file

@ -8,7 +8,7 @@ from .datatypes import * # noqa: F403
from typing import Optional, Protocol
# this dependency is annoying and we need a forked up version anyway
from pyopenapi import webmethod
from llama_models.schema_utils import webmethod
@json_schema_type

View file

@ -1,22 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .api.config import ImplType, InferenceConfig
async def get_inference_api_instance(config: InferenceConfig):
if config.impl_config.impl_type == ImplType.inline.value:
from .inference import InferenceImpl
return InferenceImpl(config.impl_config)
elif config.impl_config.impl_type == ImplType.ollama.value:
from .ollama import OllamaInference
return OllamaInference(config.impl_config)
from .client import InferenceClient
return InferenceClient(config.impl_config.url)

View file

@ -23,6 +23,10 @@ from .api import (
from .event_logger import EventLogger
async def get_client_impl(base_url: str):
return InferenceClient(base_url)
class InferenceClient(Inference):
def __init__(self, base_url: str):
print(f"Initializing client for {base_url}")
@ -46,12 +50,25 @@ class InferenceClient(Inference):
headers={"Content-Type": "application/json"},
timeout=20,
) as response:
if response.status_code != 200:
content = await response.aread()
cprint(
f"Error: HTTP {response.status_code} {content.decode()}", "red"
)
return
async for line in response.aiter_lines():
if line.startswith("data:"):
data = line[len("data: ") :]
try:
if request.stream:
yield ChatCompletionResponseStreamChunk(**json.loads(data))
if "error" in data:
cprint(data, "red")
continue
yield ChatCompletionResponseStreamChunk(
**json.loads(data)
)
else:
yield ChatCompletionResponse(**json.loads(data))
except Exception as e:
@ -62,11 +79,11 @@ class InferenceClient(Inference):
async def run_main(host: str, port: int, stream: bool):
client = InferenceClient(f"http://{host}:{port}")
message = UserMessage(content="hello world, help me out here")
message = UserMessage(content="hello world, troll me in two-paragraphs about 42")
cprint(f"User>{message.content}", "green")
iterator = client.chat_completion(
ChatCompletionRequest(
model="Meta-Llama-3.1-8B-Instruct",
model="Meta-Llama3.1-8B-Instruct",
messages=[message],
stream=stream,
)

View file

@ -1,161 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from llama_models.llama3_1.api.datatypes import StopReason
from .api.config import InlineImplConfig
from .api.datatypes import (
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ToolCallDelta,
ToolCallParseStatus,
)
from .api.endpoints import (
ChatCompletionResponse,
ChatCompletionRequest,
ChatCompletionResponseStreamChunk,
CompletionRequest,
Inference,
)
from .model_parallel import LlamaModelParallelGenerator
class InferenceImpl(Inference):
def __init__(self, config: InlineImplConfig) -> None:
self.config = config
async def initialize(self) -> None:
self.generator = LlamaModelParallelGenerator(self.config)
self.generator.start()
async def shutdown(self) -> None:
self.generator.stop()
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
if request.stream:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
tokens = []
logprobs = []
stop_reason = None
buffer = ""
ipython = False
for token_result in self.generator.chat_completion(
messages=request.messages,
temperature=request.sampling_params.temperature,
top_p=request.sampling_params.top_p,
max_gen_len=request.sampling_params.max_tokens,
logprobs=request.logprobs,
):
buffer += token_result.text
tokens.append(token_result.token)
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer = buffer[len("<|python_tag|>") :]
continue
if not request.stream:
if request.logprobs:
logprobs.append(token_result.logprob)
continue
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# TODO(ashwin): parse tool calls separately here and report errors?
# if someone breaks the iteration before coming here we are toast
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
if request.stream:
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
# TODO(ashwin): what else do we need to send out here when everything finishes?
else:
yield ChatCompletionResponse(
completion_message=message,
logprobs=logprobs if request.logprobs else None,
)

View file

@ -0,0 +1,8 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import MetaReferenceImplConfig # noqa
from .inference import get_provider_impl # noqa

View file

@ -0,0 +1,43 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.datatypes import ModelFamily
from llama_models.schema_utils import json_schema_type
from llama_models.sku_list import all_registered_models
from llama_toolchain.inference.api import QuantizationConfig
from pydantic import BaseModel, Field, validator
@json_schema_type
class MetaReferenceImplConfig(BaseModel):
model: str = Field(
default="Meta-Llama3.1-8B-Instruct",
description="Model descriptor from `llama model list`",
)
quantization: Optional[QuantizationConfig] = None
torch_seed: Optional[int] = None
max_seq_len: int
max_batch_size: int = 1
@validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = [
m.descriptor()
for m in all_registered_models()
if m.model_family == ModelFamily.llama3_1
]
if model not in permitted_models:
model_list = "\n\t".join(permitted_models)
raise ValueError(
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
)
return model

View file

@ -25,12 +25,27 @@ from fairscale.nn.model_parallel.initialize import (
from llama_models.llama3_1.api.args import ModelArgs
from llama_models.llama3_1.api.chat_format import ChatFormat, ModelInput
from llama_models.llama3_1.api.datatypes import Message
from llama_models.llama3_1.api.model import Transformer
from llama_models.llama3_1.api.tokenizer import Tokenizer
from llama_models.llama3_1.reference_impl.model import Transformer
from llama_models.sku_list import resolve_model
from termcolor import cprint
from .api.config import CheckpointType, InlineImplConfig
from .api.datatypes import QuantizationType
from llama_toolchain.common.model_utils import model_local_dir
from llama_toolchain.inference.api import QuantizationType
from .config import MetaReferenceImplConfig
def model_checkpoint_dir(model) -> str:
checkpoint_dir = Path(model_local_dir(model))
if not Path(checkpoint_dir / "consolidated.00.pth").exists():
checkpoint_dir = checkpoint_dir / "original"
assert checkpoint_dir.exists(), (
f"Could not find checkpoint dir: {checkpoint_dir}."
f"Please download model using `llama download {model.descriptor()}`"
)
return str(checkpoint_dir)
@dataclass
@ -42,7 +57,7 @@ class TokenResult:
class Llama:
@staticmethod
def build(config: InlineImplConfig):
def build(config: MetaReferenceImplConfig):
"""
Build a Llama instance by initializing and loading a model checkpoint.
@ -50,9 +65,7 @@ class Llama:
This method initializes the distributed process group, sets the device to CUDA,
and loads the pre-trained model and tokenizer.
"""
checkpoint = config.checkpoint_config.checkpoint
if checkpoint.checkpoint_type != CheckpointType.pytorch.value:
raise NotImplementedError("HuggingFace checkpoints not supported yet")
model = resolve_model(config.model)
if (
config.quantization
@ -66,7 +79,7 @@ class Llama:
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
model_parallel_size = checkpoint.model_parallel_size
model_parallel_size = model.hardware_requirements.gpu_count
if not model_parallel_is_initialized():
initialize_model_parallel(model_parallel_size)
@ -81,7 +94,8 @@ class Llama:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
ckpt_dir = checkpoint.checkpoint_dir
ckpt_dir = model_checkpoint_dir(model)
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
assert model_parallel_size == len(
@ -102,7 +116,9 @@ class Llama:
max_batch_size=config.max_batch_size,
**params,
)
tokenizer = Tokenizer(model_path=checkpoint.tokenizer_path)
tokenizer_path = os.path.join(ckpt_dir, "tokenizer.model")
tokenizer = Tokenizer(model_path=tokenizer_path)
assert (
model_args.vocab_size == tokenizer.n_words

View file

@ -0,0 +1,204 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
from typing import AsyncIterator, Dict, Union
from llama_models.llama3_1.api.datatypes import StopReason
from llama_models.sku_list import resolve_model
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
from llama_toolchain.inference.api import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
Inference,
ToolCallDelta,
ToolCallParseStatus,
)
from .config import MetaReferenceImplConfig
from .model_parallel import LlamaModelParallelGenerator
async def get_provider_impl(
config: MetaReferenceImplConfig, _deps: Dict[Api, ProviderSpec]
):
assert isinstance(
config, MetaReferenceImplConfig
), f"Unexpected config type: {type(config)}"
impl = MetaReferenceInferenceImpl(config)
await impl.initialize()
return impl
# there's a single model parallel process running serving the model. for now,
# we don't support multiple concurrent requests to this process.
SEMAPHORE = asyncio.Semaphore(1)
class MetaReferenceInferenceImpl(Inference):
def __init__(self, config: MetaReferenceImplConfig) -> None:
self.config = config
model = resolve_model(config.model)
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model = model
# verify that the checkpoint actually is for this model lol
async def initialize(self) -> None:
self.generator = LlamaModelParallelGenerator(self.config)
self.generator.start()
async def shutdown(self) -> None:
self.generator.stop()
# hm, when stream=False, we should not be doing SSE :/ which is what the
# top-level server is going to do. make the typing more specific here
async def chat_completion(
self, request: ChatCompletionRequest
) -> AsyncIterator[
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
]:
model = resolve_model(request.model)
if model is None:
raise RuntimeError(
f"Unknown model: {request.model}, Run `llama model list`"
)
elif model.descriptor() != self.model.descriptor():
raise RuntimeError(
f"Model mismatch: {request.model} != {self.model.descriptor()}"
)
if SEMAPHORE.locked():
raise RuntimeError("Only one concurrent request is supported")
async with SEMAPHORE:
if request.stream:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
tokens = []
logprobs = []
stop_reason = None
buffer = ""
ipython = False
for token_result in self.generator.chat_completion(
messages=request.messages,
temperature=request.sampling_params.temperature,
top_p=request.sampling_params.top_p,
max_gen_len=request.sampling_params.max_tokens,
logprobs=request.logprobs,
):
buffer += token_result.text
tokens.append(token_result.token)
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer = buffer[len("<|python_tag|>") :]
continue
if not request.stream:
if request.logprobs:
logprobs.append(token_result.logprob)
continue
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# TODO(ashwin): parse tool calls separately here and report errors?
# if someone breaks the iteration before coming here we are toast
message = self.generator.formatter.decode_assistant_message(
tokens, stop_reason
)
if request.stream:
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
# TODO(ashwin): what else do we need to send out here when everything finishes?
else:
yield ChatCompletionResponse(
completion_message=message,
logprobs=logprobs if request.logprobs else None,
)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
@ -12,9 +13,10 @@ from typing import Generator, List, Optional
from llama_models.llama3_1.api.chat_format import ChatFormat
from llama_models.llama3_1.api.datatypes import Message
from llama_models.llama3_1.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from .api.config import InlineImplConfig
from .generation import Llama
from .config import MetaReferenceImplConfig
from .generation import Llama, model_checkpoint_dir
from .parallel_utils import ModelParallelProcessGroup
@ -42,7 +44,7 @@ class ModelRunner:
)
def init_model_cb(config: InlineImplConfig):
def init_model_cb(config: MetaReferenceImplConfig):
llama = Llama.build(config)
return ModelRunner(llama)
@ -58,13 +60,14 @@ class LlamaModelParallelGenerator:
clear at the callsite why we need to use a context manager.
"""
def __init__(self, config: InlineImplConfig):
def __init__(self, config: MetaReferenceImplConfig):
self.config = config
self.model = resolve_model(self.config.model)
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
# while the tool-use loop is going
checkpoint = self.config.checkpoint_config.checkpoint
self.formatter = ChatFormat(Tokenizer(checkpoint.tokenizer_path))
checkpoint_dir = model_checkpoint_dir(self.model)
tokenizer_path = os.path.join(checkpoint_dir, "tokenizer.model")
self.formatter = ChatFormat(Tokenizer(tokenizer_path))
def start(self):
self.__enter__()
@ -73,9 +76,8 @@ class LlamaModelParallelGenerator:
self.__exit__(None, None, None)
def __enter__(self):
checkpoint = self.config.checkpoint_config.checkpoint
self.group = ModelParallelProcessGroup(
checkpoint.model_parallel_size,
self.model.hardware_requirements.gpu_count,
init_model_cb=partial(init_model_cb, self.config),
)
self.group.start()

View file

@ -0,0 +1,8 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import OllamaImplConfig # noqa
from .ollama import get_provider_impl # noqa

View file

@ -0,0 +1,16 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class OllamaImplConfig(BaseModel):
url: str = Field(
default="http://localhost:11434",
description="The URL for the ollama server",
)

View file

@ -1,11 +1,14 @@
import httpx
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from typing import AsyncGenerator, Dict
from typing import AsyncGenerator
import httpx
from ollama import AsyncClient
from llama_models.sku_list import resolve_model
from llama_models.llama3_1.api.datatypes import (
BuiltinTool,
CompletionMessage,
@ -14,44 +17,56 @@ from llama_models.llama3_1.api.datatypes import (
ToolCall,
)
from llama_models.llama3_1.api.tool_utils import ToolUtils
from .api.config import OllamaImplConfig
from .api.datatypes import (
from llama_models.sku_list import resolve_model
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
from llama_toolchain.inference.api import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ToolCallDelta,
ToolCallParseStatus,
)
from .api.endpoints import (
ChatCompletionResponse,
ChatCompletionRequest,
ChatCompletionResponseStreamChunk,
CompletionRequest,
Inference,
ToolCallDelta,
ToolCallParseStatus,
)
from ollama import AsyncClient
from .config import OllamaImplConfig
# TODO: Eventually this will move to the llama cli model list command
# mapping of Model SKUs to ollama models
OLLAMA_SUPPORTED_SKUS = {
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16"
# TODO: Add other variants for llama3.1
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
"Meta-Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
}
async def get_provider_impl(
config: OllamaImplConfig, _deps: Dict[Api, ProviderSpec]
) -> Inference:
assert isinstance(
config, OllamaImplConfig
), f"Unexpected config type: {type(config)}"
impl = OllamaInference(config)
await impl.initialize()
return impl
class OllamaInference(Inference):
def __init__(self, config: OllamaImplConfig) -> None:
self.config = config
self.model = config.model
@property
def client(self) -> AsyncClient:
return AsyncClient(host=self.config.url)
async def initialize(self) -> None:
self.client = AsyncClient(host=self.config.url)
try:
status = await self.client.pull(self.model)
assert status['status'] == 'success', f"Failed to pull model {self.model} in ollama"
await self.client.ps()
except httpx.ConnectError:
print("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
raise
raise RuntimeError("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
async def shutdown(self) -> None:
pass
@ -62,17 +77,19 @@ class OllamaInference(Inference):
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
ollama_messages = []
for message in messages:
ollama_messages.append(
{"role": message.role, "content": message.content}
)
if message.role == "ipython":
role = "tool"
else:
role = message.role
ollama_messages.append({"role": role, "content": message.content})
return ollama_messages
def resolve_ollama_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None and
model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
model is not None
and model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(OLLAMA_SUPPORTED_SKUS.keys())}"
return OLLAMA_SUPPORTED_SKUS.get(model.descriptor(shorten_default_variant=True))
@ -84,8 +101,8 @@ class OllamaInference(Inference):
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
if (
request.sampling_params.repetition_penalty is not None and
request.sampling_params.repetition_penalty != 1.0
request.sampling_params.repetition_penalty is not None
and request.sampling_params.repetition_penalty != 1.0
):
options["repeat_penalty"] = request.sampling_params.repetition_penalty
@ -95,6 +112,21 @@ class OllamaInference(Inference):
# accumulate sampling params and other options to pass to ollama
options = self.get_ollama_chat_options(request)
ollama_model = self.resolve_ollama_model(request.model)
res = await self.client.ps()
need_model_pull = True
for r in res["models"]:
if ollama_model == r["model"]:
need_model_pull = False
break
if need_model_pull:
print(f"Pulling model: {ollama_model}")
status = await self.client.pull(ollama_model)
assert (
status["status"] == "success"
), f"Failed to pull model {self.model} in ollama"
if not request.stream:
r = await self.client.chat(
model=ollama_model,
@ -103,14 +135,14 @@ class OllamaInference(Inference):
options=options,
)
stop_reason = None
if r['done']:
if r['done_reason'] == 'stop':
if r["done"]:
if r["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif r['done_reason'] == 'length':
elif r["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
completion_message = decode_assistant_message_from_content(
r['message']['content'],
r["message"]["content"],
stop_reason,
)
yield ChatCompletionResponse(
@ -124,7 +156,6 @@ class OllamaInference(Inference):
delta="",
)
)
stream = await self.client.chat(
model=ollama_model,
messages=self._messages_to_ollama_messages(request.messages),
@ -137,15 +168,14 @@ class OllamaInference(Inference):
stop_reason = None
async for chunk in stream:
# check if ollama is done
if chunk['done']:
if chunk['done_reason'] == 'stop':
if chunk["done"]:
if stop_reason is None and chunk["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif chunk['done_reason'] == 'length':
elif stop_reason is None and chunk["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
break
text = chunk['message']['content']
text = chunk["message"]["content"]
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
@ -159,7 +189,7 @@ class OllamaInference(Inference):
),
)
)
buffer = buffer[len("<|python_tag|>") :]
buffer += text
continue
if ipython:
@ -197,7 +227,6 @@ class OllamaInference(Inference):
# parse tool calls and report errors
message = decode_assistant_message_from_content(buffer, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
@ -232,7 +261,7 @@ class OllamaInference(Inference):
)
#TODO: Consolidate this with impl in llama-models
# TODO: Consolidate this with impl in llama-models
def decode_assistant_message_from_content(
content: str,
stop_reason: StopReason,

View file

@ -0,0 +1,39 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_toolchain.distribution.datatypes import Api, InlineProviderSpec, ProviderSpec
def available_inference_providers() -> List[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.inference,
provider_id="meta-reference",
pip_packages=[
"accelerate",
"blobfile",
"codeshield",
"fairscale",
"fbgemm-gpu==0.8.0",
"torch",
"transformers",
"zmq",
],
module="llama_toolchain.inference.meta_reference",
config_class="llama_toolchain.inference.meta_reference.MetaReferenceImplConfig",
),
InlineProviderSpec(
api=Api.inference,
provider_id="meta-ollama",
pip_packages=[
"ollama",
],
module="llama_toolchain.inference.ollama",
config_class="llama_toolchain.inference.ollama.OllamaImplConfig",
),
]

View file

@ -17,7 +17,7 @@ from llama_models.llama3_1.api.model import Transformer, TransformerBlock
from llama_toolchain.inference.api.config import (
CheckpointQuantizationFormat,
InlineImplConfig,
MetaReferenceImplConfig,
)
from llama_toolchain.inference.api.datatypes import QuantizationType
@ -46,7 +46,7 @@ def swiglu_wrapper(
def convert_to_quantized_model(
model: Transformer,
config: InlineImplConfig,
config: MetaReferenceImplConfig,
fp8_activation_scale_ub: Optional[float] = 1200.0,
) -> Transformer:
if config.quantization.type == QuantizationType.bf16.value:

View file

@ -1,119 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import signal
import fire
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from hydra_zen import instantiate
from llama_toolchain.utils import get_default_config_dir, parse_config
from .api.endpoints import ChatCompletionRequest, ChatCompletionResponseStreamChunk
from .api_instance import get_inference_api_instance
load_dotenv()
GLOBAL_CONFIG = None
def get_config():
return GLOBAL_CONFIG
def handle_sigint(*args, **kwargs):
print("SIGINT or CTRL-C detected. Exiting gracefully", args)
loop = asyncio.get_event_loop()
for task in asyncio.all_tasks(loop):
task.cancel()
loop.stop()
app = FastAPI()
@app.on_event("startup")
async def startup():
global InferenceApiInstance
config = get_config()
inference_config = instantiate(config["inference_config"])
InferenceApiInstance = await get_inference_api_instance(
inference_config,
)
await InferenceApiInstance.initialize()
@app.on_event("shutdown")
async def shutdown():
global InferenceApiInstance
print("shutting down")
await InferenceApiInstance.shutdown()
# there's a single model parallel process running serving the model. for now,
# we don't support multiple concurrent requests to this process.
semaphore = asyncio.Semaphore(1)
@app.post(
"/inference/chat_completion", response_model=ChatCompletionResponseStreamChunk
)
def chat_completion(request: Request, exec_request: ChatCompletionRequest):
if semaphore.locked():
raise HTTPException(
status_code=429,
detail="Only a single concurrent request allowed right now.",
)
async def sse_generator(event_gen):
try:
async for event in event_gen:
yield f"data: {event.json()}\n\n"
await asyncio.sleep(0.01)
except asyncio.CancelledError:
print("Generator cancelled")
await event_gen.aclose()
finally:
semaphore.release()
async def event_gen():
async for event in InferenceApiInstance.chat_completion(exec_request):
yield event
return StreamingResponse(
sse_generator(event_gen()),
media_type="text/event-stream",
)
def main(config_path: str, port: int = 5000, disable_ipv6: bool = False):
global GLOBAL_CONFIG
config_dir = get_default_config_dir()
GLOBAL_CONFIG = parse_config(config_dir, config_path)
signal.signal(signal.SIGINT, handle_sigint)
import uvicorn
# FYI this does not do hot-reloads
listen_host = "::" if not disable_ipv6 else "0.0.0.0"
print(f"Listening on {listen_host}:{port}")
uvicorn.run(app, host=listen_host, port=port)
if __name__ == "__main__":
fire.Fire(main)