Introduce Llama stack distributions (#22)

* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
This commit is contained in:
Ashwin Bharambe 2024-08-08 13:38:41 -07:00 committed by GitHub
parent da4645a27a
commit e830814399
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
115 changed files with 5839 additions and 1120 deletions

View file

@ -0,0 +1,43 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.datatypes import ModelFamily
from llama_models.schema_utils import json_schema_type
from llama_models.sku_list import all_registered_models
from llama_toolchain.inference.api import QuantizationConfig
from pydantic import BaseModel, Field, validator
@json_schema_type
class MetaReferenceImplConfig(BaseModel):
model: str = Field(
default="Meta-Llama3.1-8B-Instruct",
description="Model descriptor from `llama model list`",
)
quantization: Optional[QuantizationConfig] = None
torch_seed: Optional[int] = None
max_seq_len: int
max_batch_size: int = 1
@validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = [
m.descriptor()
for m in all_registered_models()
if m.model_family == ModelFamily.llama3_1
]
if model not in permitted_models:
model_list = "\n\t".join(permitted_models)
raise ValueError(
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
)
return model