mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
feat: add OpenAI-compatible Bedrock provider (#3748)
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Implements AWS Bedrock inference provider using OpenAI-compatible endpoint for Llama models available through Bedrock. Closes: #3410 ## What does this PR do? Adds AWS Bedrock as an inference provider using the OpenAI-compatible endpoint. This lets us use Bedrock models (GPT-OSS, Llama) through the standard llama-stack inference API. The implementation uses LiteLLM's OpenAI client under the hood, so it gets all the OpenAI compatibility features. The provider handles per-request API key overrides via headers. ## Test Plan **Tested the following scenarios:** - Non-streaming completion - basic request/response flow - Streaming completion - SSE streaming with chunked responses - Multi-turn conversations - context retention across turns - Tool calling - function calling with proper tool_calls format # Bedrock OpenAI-Compatible Provider - Test Results **Model:** `bedrock-inference/openai.gpt-oss-20b-1:0` --- ## Test 1: Model Listing **Request:** ```http GET /v1/models HTTP/1.1 ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: application/json { "data": [ {"identifier": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}, {"identifier": "bedrock-inference/openai.gpt-oss-40b-1:0", ...} ] } ``` --- ## Test 2: Non-Streaming Completion **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "bedrock-inference/openai.gpt-oss-20b-1:0", "messages": [{"role": "user", "content": "Say 'Hello from Bedrock' and nothing else"}], "stream": false } ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: application/json { "choices": [{ "finish_reason": "stop", "message": {"content": "...Hello from Bedrock"} }], "usage": {"prompt_tokens": 79, "completion_tokens": 50, "total_tokens": 129} } ``` --- ## Test 3: Streaming Completion **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "bedrock-inference/openai.gpt-oss-20b-1:0", "messages": [{"role": "user", "content": "Count from 1 to 5"}], "stream": true } ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: text/event-stream [6 SSE chunks received] Final content: "1, 2, 3, 4, 5" ``` --- ## Test 4: Error Handling - Invalid Model **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "invalid-model-id", "messages": [{"role": "user", "content": "Hello"}], "stream": false } ``` **Response:** ```http HTTP/1.1 404 Not Found Content-Type: application/json { "detail": "Model 'invalid-model-id' not found. Use 'client.models.list()' to list available Models." } ``` --- ## Test 5: Multi-Turn Conversation **Request 1:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "My name is Alice"}] } ``` **Response 1:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Nice to meet you, Alice! How can I help you today?"} }] } ``` **Request 2 (with history):** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [ {"role": "user", "content": "My name is Alice"}, {"role": "assistant", "content": "...Nice to meet you, Alice!..."}, {"role": "user", "content": "What is my name?"} ] } ``` **Response 2:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Your name is Alice."} }], "usage": {"prompt_tokens": 183, "completion_tokens": 42} } ``` **Context retained across turns** --- ## Test 6: System Messages **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [ {"role": "system", "content": "You are Shakespeare. Respond only in Shakespearean English."}, {"role": "user", "content": "Tell me about the weather"} ] } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "Lo! I heed thy request..."} }], "usage": {"completion_tokens": 813} } ``` --- ## Test 7: Tool Calling **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "What's the weather in San Francisco?"}], "tools": [{ "type": "function", "function": { "name": "get_weather", "parameters": {"type": "object", "properties": {"location": {"type": "string"}}} } }] } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "finish_reason": "tool_calls", "message": { "tool_calls": [{ "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"} }] } }] } ``` --- ## Test 8: Sampling Parameters **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "Say hello"}], "temperature": 0.7, "top_p": 0.9 } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Hello! 👋 How can I help you today?"} }] } ``` --- ## Test 9: Authentication Error Handling ### Subtest A: Invalid API Key **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": "invalid-fake-key-12345"} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 400 Bad Request { "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}" } ``` --- ### Subtest B: Empty API Key (Fallback to Config) **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": ""} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Hello! How can I assist you today?"} }] } ``` **Fell back to config key** --- ### Subtest C: Malformed Token **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": "not-a-valid-bedrock-token-format"} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 400 Bad Request { "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}" } ```
This commit is contained in:
parent
a2c4c12384
commit
e894e36eea
15 changed files with 309 additions and 190 deletions
|
|
@ -4,139 +4,124 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from collections.abc import AsyncIterator
|
||||
from collections.abc import AsyncIterator, Iterable
|
||||
|
||||
from botocore.client import BaseClient
|
||||
from openai import AuthenticationError
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
Inference,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_strategy_options,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
)
|
||||
from llama_stack.core.telemetry.tracing import get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
from .config import BedrockConfig
|
||||
|
||||
REGION_PREFIX_MAP = {
|
||||
"us": "us.",
|
||||
"eu": "eu.",
|
||||
"ap": "ap.",
|
||||
}
|
||||
logger = get_logger(name=__name__, category="inference::bedrock")
|
||||
|
||||
|
||||
def _get_region_prefix(region: str | None) -> str:
|
||||
# AWS requires region prefixes for inference profiles
|
||||
if region is None:
|
||||
return "us." # default to US when we don't know
|
||||
class BedrockInferenceAdapter(OpenAIMixin):
|
||||
"""
|
||||
Adapter for AWS Bedrock's OpenAI-compatible API endpoints.
|
||||
|
||||
# Handle case insensitive region matching
|
||||
region_lower = region.lower()
|
||||
for prefix in REGION_PREFIX_MAP:
|
||||
if region_lower.startswith(f"{prefix}-"):
|
||||
return REGION_PREFIX_MAP[prefix]
|
||||
Supports Llama models across regions and GPT-OSS models (us-west-2 only).
|
||||
|
||||
# Fallback to US for anything we don't recognize
|
||||
return "us."
|
||||
Note: Bedrock's OpenAI-compatible endpoint does not support /v1/models
|
||||
for dynamic model discovery. Models must be pre-registered in the config.
|
||||
"""
|
||||
|
||||
config: BedrockConfig
|
||||
provider_data_api_key_field: str = "aws_bedrock_api_key"
|
||||
|
||||
def _to_inference_profile_id(model_id: str, region: str = None) -> str:
|
||||
# Return ARNs unchanged
|
||||
if model_id.startswith("arn:"):
|
||||
return model_id
|
||||
def get_base_url(self) -> str:
|
||||
"""Get base URL for OpenAI client."""
|
||||
return f"https://bedrock-runtime.{self.config.region_name}.amazonaws.com/openai/v1"
|
||||
|
||||
# Return inference profile IDs that already have regional prefixes
|
||||
if any(model_id.startswith(p) for p in REGION_PREFIX_MAP.values()):
|
||||
return model_id
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
"""
|
||||
Bedrock's OpenAI-compatible endpoint does not support the /v1/models endpoint.
|
||||
Returns empty list since models must be pre-registered in the config.
|
||||
"""
|
||||
return []
|
||||
|
||||
# Default to US East when no region is provided
|
||||
if region is None:
|
||||
region = "us-east-1"
|
||||
|
||||
return _get_region_prefix(region) + model_id
|
||||
|
||||
|
||||
class BedrockInferenceAdapter(
|
||||
ModelRegistryHelper,
|
||||
Inference,
|
||||
):
|
||||
def __init__(self, config: BedrockConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
self._config = config
|
||||
self._client = None
|
||||
|
||||
@property
|
||||
def client(self) -> BaseClient:
|
||||
if self._client is None:
|
||||
self._client = create_bedrock_client(self._config)
|
||||
return self._client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self._client is not None:
|
||||
self._client.close()
|
||||
|
||||
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> dict:
|
||||
bedrock_model = request.model
|
||||
|
||||
sampling_params = request.sampling_params
|
||||
options = get_sampling_strategy_options(sampling_params)
|
||||
|
||||
if sampling_params.max_tokens:
|
||||
options["max_gen_len"] = sampling_params.max_tokens
|
||||
if sampling_params.repetition_penalty > 0:
|
||||
options["repetition_penalty"] = sampling_params.repetition_penalty
|
||||
|
||||
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
||||
|
||||
# Convert foundation model ID to inference profile ID
|
||||
region_name = self.client.meta.region_name
|
||||
inference_profile_id = _to_inference_profile_id(bedrock_model, region_name)
|
||||
|
||||
return {
|
||||
"modelId": inference_profile_id,
|
||||
"body": json.dumps(
|
||||
{
|
||||
"prompt": prompt,
|
||||
**options,
|
||||
}
|
||||
),
|
||||
}
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Bedrock doesn't support dynamic model listing via /v1/models.
|
||||
Always return True to accept all models registered in the config.
|
||||
"""
|
||||
return True
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
"""Bedrock's OpenAI-compatible API does not support the /v1/embeddings endpoint."""
|
||||
raise NotImplementedError(
|
||||
"Bedrock's OpenAI-compatible API does not support /v1/embeddings endpoint. "
|
||||
"See https://docs.aws.amazon.com/bedrock/latest/userguide/inference-chat-completions.html"
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
params: OpenAICompletionRequestWithExtraBody,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
|
||||
"""Bedrock's OpenAI-compatible API does not support the /v1/completions endpoint."""
|
||||
raise NotImplementedError(
|
||||
"Bedrock's OpenAI-compatible API does not support /v1/completions endpoint. "
|
||||
"Only /v1/chat/completions is supported. "
|
||||
"See https://docs.aws.amazon.com/bedrock/latest/userguide/inference-chat-completions.html"
|
||||
)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")
|
||||
"""Override to enable streaming usage metrics and handle authentication errors."""
|
||||
# Enable streaming usage metrics when telemetry is active
|
||||
if params.stream and get_current_span() is not None:
|
||||
if params.stream_options is None:
|
||||
params.stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in params.stream_options:
|
||||
params.stream_options = {**params.stream_options, "include_usage": True}
|
||||
|
||||
try:
|
||||
logger.debug(f"Calling Bedrock OpenAI API with model={params.model}, stream={params.stream}")
|
||||
result = await super().openai_chat_completion(params=params)
|
||||
logger.debug(f"Bedrock API returned: {type(result).__name__ if result is not None else 'None'}")
|
||||
|
||||
if result is None:
|
||||
logger.error(f"Bedrock OpenAI client returned None for model={params.model}, stream={params.stream}")
|
||||
raise RuntimeError(
|
||||
f"Bedrock API returned no response for model '{params.model}'. "
|
||||
"This may indicate the model is not supported or a network/API issue occurred."
|
||||
)
|
||||
|
||||
return result
|
||||
except AuthenticationError as e:
|
||||
error_msg = str(e)
|
||||
|
||||
# Check if this is a token expiration error
|
||||
if "expired" in error_msg.lower() or "Bearer Token has expired" in error_msg:
|
||||
logger.error(f"AWS Bedrock authentication token expired: {error_msg}")
|
||||
raise ValueError(
|
||||
"AWS Bedrock authentication failed: Bearer token has expired. "
|
||||
"The AWS_BEDROCK_API_KEY environment variable contains an expired pre-signed URL. "
|
||||
"Please refresh your token by generating a new pre-signed URL with AWS credentials. "
|
||||
"Refer to AWS Bedrock documentation for details on OpenAI-compatible endpoints."
|
||||
) from e
|
||||
else:
|
||||
logger.error(f"AWS Bedrock authentication failed: {error_msg}")
|
||||
raise ValueError(
|
||||
f"AWS Bedrock authentication failed: {error_msg}. "
|
||||
"Please verify your API key is correct in the provider config or x-llamastack-provider-data header. "
|
||||
"The API key should be a valid AWS pre-signed URL for Bedrock's OpenAI-compatible endpoint."
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling Bedrock API: {type(e).__name__}: {e}", exc_info=True)
|
||||
raise
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue