fix!: remove chunk_id property from Chunk class (#3954)

# What does this PR do?

chunk_id in the Chunk class executes actual logic to compute a chunk ID.
This sort of logic should not live in the API spec.

Instead, the providers should be in charge of calling generate_chunk_id,
and pass it to `Chunk`.

this removes the incorrect dependency between Provider impl and API impl

Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
Charlie Doern 2025-10-29 21:59:59 -04:00 committed by GitHub
parent 0ef9166c7e
commit e8ecc99524
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
38 changed files with 40679 additions and 135 deletions

View file

@ -8,7 +8,6 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from fastapi import Body
@ -18,7 +17,6 @@ from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
@ -61,38 +59,19 @@ class Chunk(BaseModel):
"""
A chunk of content that can be inserted into a vector database.
:param content: The content of the chunk, which can be interleaved text, images, or other types.
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
:param chunk_id: Unique identifier for the chunk. Must be provided explicitly.
:param metadata: Metadata associated with the chunk that will be used in the model context during inference.
:param stored_chunk_id: The chunk ID that is stored in the vector database. Used for backend functionality.
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
:param chunk_metadata: Metadata for the chunk that will NOT be used in the context during inference.
The `chunk_metadata` is required backend functionality.
"""
content: InterleavedContent
chunk_id: str
metadata: dict[str, Any] = Field(default_factory=dict)
embedding: list[float] | None = None
# The alias parameter serializes the field as "chunk_id" in JSON but keeps the internal name as "stored_chunk_id"
stored_chunk_id: str | None = Field(default=None, alias="chunk_id")
chunk_metadata: ChunkMetadata | None = None
model_config = {"populate_by_name": True}
def model_post_init(self, __context):
# Extract chunk_id from metadata if present
if self.metadata and "chunk_id" in self.metadata:
self.stored_chunk_id = self.metadata.pop("chunk_id")
@property
def chunk_id(self) -> str:
"""Returns the chunk ID, which is either an input `chunk_id` or a generated one if not set."""
if self.stored_chunk_id:
return self.stored_chunk_id
if "document_id" in self.metadata:
return generate_chunk_id(self.metadata["document_id"], str(self.content))
return generate_chunk_id(str(uuid.uuid4()), str(self.content))
@property
def document_id(self) -> str | None:
"""Returns the document_id from either metadata or chunk_metadata, with metadata taking precedence."""

View file

@ -196,6 +196,7 @@ def make_overlapped_chunks(
chunks.append(
Chunk(
content=chunk,
chunk_id=chunk_id,
metadata=chunk_metadata,
chunk_metadata=backend_chunk_metadata,
)