chore: introduce write queue for inference_store (#3383)

# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids
overwhelming request processing with slow inference writes.

## Test Plan

Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
## RPS from 21 -> 57
This commit is contained in:
ehhuang 2025-09-10 11:57:42 -07:00 committed by GitHub
parent e6edc1f934
commit e980436a2e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 139 additions and 22 deletions

View file

@ -58,14 +58,6 @@ class BenchmarkStats:
print(f"\n{'='*60}")
print(f"BENCHMARK RESULTS")
print(f"{'='*60}")
print(f"Total time: {total_time:.2f}s")
print(f"Concurrent users: {self.concurrent_users}")
print(f"Total requests: {self.total_requests}")
print(f"Successful requests: {self.success_count}")
print(f"Failed requests: {len(self.errors)}")
print(f"Success rate: {success_rate:.1f}%")
print(f"Requests per second: {self.success_count / total_time:.2f}")
print(f"\nResponse Time Statistics:")
print(f" Mean: {statistics.mean(self.response_times):.3f}s")
@ -106,6 +98,15 @@ class BenchmarkStats:
print(f" Mean chunks per response: {statistics.mean(self.chunks_received):.1f}")
print(f" Total chunks received: {sum(self.chunks_received)}")
print(f"{'='*60}")
print(f"Total time: {total_time:.2f}s")
print(f"Concurrent users: {self.concurrent_users}")
print(f"Total requests: {self.total_requests}")
print(f"Successful requests: {self.success_count}")
print(f"Failed requests: {len(self.errors)}")
print(f"Success rate: {success_rate:.1f}%")
print(f"Requests per second: {self.success_count / total_time:.2f}")
if self.errors:
print(f"\nErrors (showing first 5):")
for error in self.errors[:5]:
@ -215,7 +216,7 @@ class LlamaStackBenchmark:
await asyncio.sleep(1) # Report every second
if time.time() >= last_report_time + 10: # Report every 10 seconds
elapsed = time.time() - stats.start_time
print(f"Completed: {stats.total_requests} requests in {elapsed:.1f}s")
print(f"Completed: {stats.total_requests} requests in {elapsed:.1f}s, RPS: {stats.total_requests / elapsed:.1f}")
last_report_time = time.time()
except asyncio.CancelledError:
break

View file

@ -2,6 +2,7 @@ version: '2'
image_name: kubernetes-benchmark-demo
apis:
- agents
- files
- inference
- files
- safety
@ -20,6 +21,14 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb