chore: introduce write queue for inference_store (#3383)

# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids
overwhelming request processing with slow inference writes.

## Test Plan

Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
## RPS from 21 -> 57
This commit is contained in:
ehhuang 2025-09-10 11:57:42 -07:00 committed by GitHub
parent e6edc1f934
commit e980436a2e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 139 additions and 22 deletions

View file

@ -65,6 +65,9 @@ async def test_inference_store_pagination_basic():
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Test 1: First page with limit=2, descending order (default)
result = await store.list_chat_completions(limit=2, order=Order.desc)
assert len(result.data) == 2
@ -108,6 +111,9 @@ async def test_inference_store_pagination_ascending():
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Test ascending order pagination
result = await store.list_chat_completions(limit=1, order=Order.asc)
assert len(result.data) == 1
@ -143,6 +149,9 @@ async def test_inference_store_pagination_with_model_filter():
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Test pagination with model filter
result = await store.list_chat_completions(limit=1, model="model-a", order=Order.desc)
assert len(result.data) == 1
@ -190,6 +199,9 @@ async def test_inference_store_pagination_no_limit():
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Test without limit
result = await store.list_chat_completions(order=Order.desc)
assert len(result.data) == 2