Merge 9aef325934 into sapling-pr-archive-ehhuang

This commit is contained in:
ehhuang 2025-10-27 15:32:50 -07:00 committed by GitHub
commit e9a8967ed5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 1280 additions and 197 deletions

View file

@ -9862,7 +9862,7 @@ components:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_db_id:
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
@ -9873,7 +9873,7 @@ components:
additionalProperties: false
required:
- documents
- vector_db_id
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
@ -10044,7 +10044,7 @@ components:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_db_ids:
vector_store_ids:
type: array
items:
type: string
@ -10057,7 +10057,7 @@ components:
additionalProperties: false
required:
- content
- vector_db_ids
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
@ -10281,7 +10281,7 @@ components:
InsertChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to insert the chunks into.
@ -10300,13 +10300,13 @@ components:
description: The time to live of the chunks.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- chunks
title: InsertChunksRequest
QueryChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to query.
@ -10326,7 +10326,7 @@ components:
description: The parameters of the query.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- query
title: QueryChunksRequest
QueryChunksResponse:
@ -11844,7 +11844,7 @@ components:
description: Type of the step in an agent turn.
const: memory_retrieval
default: memory_retrieval
vector_db_ids:
vector_store_ids:
type: string
description: >-
The IDs of the vector databases to retrieve context from.
@ -11857,7 +11857,7 @@ components:
- turn_id
- step_id
- step_type
- vector_db_ids
- vector_store_ids
- inserted_context
title: MemoryRetrievalStep
description: >-

View file

@ -72,14 +72,14 @@ description: |
Example with hybrid search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
)
# Using RRF ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -91,7 +91,7 @@ description: |
# Using weighted ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -105,7 +105,7 @@ description: |
Example with explicit vector search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
)
@ -114,7 +114,7 @@ description: |
Example with keyword search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
)
@ -277,14 +277,14 @@ The SQLite-vec provider supports three search modes:
Example with hybrid search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
)
# Using RRF ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -296,7 +296,7 @@ response = await vector_io.query_chunks(
# Using weighted ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -310,7 +310,7 @@ response = await vector_io.query_chunks(
Example with explicit vector search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
)
@ -319,7 +319,7 @@ response = await vector_io.query_chunks(
Example with keyword search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
)

View file

@ -4390,7 +4390,7 @@
"const": "memory_retrieval",
"default": "memory_retrieval"
},
"vector_db_ids": {
"vector_store_ids": {
"type": "string",
"description": "The IDs of the vector databases to retrieve context from."
},
@ -4404,7 +4404,7 @@
"turn_id",
"step_id",
"step_type",
"vector_db_ids",
"vector_store_ids",
"inserted_context"
],
"title": "MemoryRetrievalStep",

View file

@ -3252,7 +3252,7 @@ components:
description: Type of the step in an agent turn.
const: memory_retrieval
default: memory_retrieval
vector_db_ids:
vector_store_ids:
type: string
description: >-
The IDs of the vector databases to retrieve context from.
@ -3265,7 +3265,7 @@ components:
- turn_id
- step_id
- step_type
- vector_db_ids
- vector_store_ids
- inserted_context
title: MemoryRetrievalStep
description: >-

View file

@ -2865,7 +2865,7 @@
"const": "memory_retrieval",
"default": "memory_retrieval"
},
"vector_db_ids": {
"vector_store_ids": {
"type": "string",
"description": "The IDs of the vector databases to retrieve context from."
},
@ -2879,7 +2879,7 @@
"turn_id",
"step_id",
"step_type",
"vector_db_ids",
"vector_store_ids",
"inserted_context"
],
"title": "MemoryRetrievalStep",

View file

@ -2085,7 +2085,7 @@ components:
description: Type of the step in an agent turn.
const: memory_retrieval
default: memory_retrieval
vector_db_ids:
vector_store_ids:
type: string
description: >-
The IDs of the vector databases to retrieve context from.
@ -2098,7 +2098,7 @@ components:
- turn_id
- step_id
- step_type
- vector_db_ids
- vector_store_ids
- inserted_context
title: MemoryRetrievalStep
description: >-

View file

@ -11412,7 +11412,7 @@
},
"description": "List of documents to index in the RAG system"
},
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "ID of the vector database to store the document embeddings"
},
@ -11424,7 +11424,7 @@
"additionalProperties": false,
"required": [
"documents",
"vector_db_id",
"vector_store_id",
"chunk_size_in_tokens"
],
"title": "InsertRequest"
@ -11615,7 +11615,7 @@
"$ref": "#/components/schemas/InterleavedContent",
"description": "The query content to search for in the indexed documents"
},
"vector_db_ids": {
"vector_store_ids": {
"type": "array",
"items": {
"type": "string"
@ -11630,7 +11630,7 @@
"additionalProperties": false,
"required": [
"content",
"vector_db_ids"
"vector_store_ids"
],
"title": "QueryRequest"
},
@ -11923,7 +11923,7 @@
"InsertChunksRequest": {
"type": "object",
"properties": {
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "The identifier of the vector database to insert the chunks into."
},
@ -11941,7 +11941,7 @@
},
"additionalProperties": false,
"required": [
"vector_db_id",
"vector_store_id",
"chunks"
],
"title": "InsertChunksRequest"
@ -11949,7 +11949,7 @@
"QueryChunksRequest": {
"type": "object",
"properties": {
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "The identifier of the vector database to query."
},
@ -11986,7 +11986,7 @@
},
"additionalProperties": false,
"required": [
"vector_db_id",
"vector_store_id",
"query"
],
"title": "QueryChunksRequest"

View file

@ -8649,7 +8649,7 @@ components:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_db_id:
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
@ -8660,7 +8660,7 @@ components:
additionalProperties: false
required:
- documents
- vector_db_id
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
@ -8831,7 +8831,7 @@ components:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_db_ids:
vector_store_ids:
type: array
items:
type: string
@ -8844,7 +8844,7 @@ components:
additionalProperties: false
required:
- content
- vector_db_ids
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
@ -9068,7 +9068,7 @@ components:
InsertChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to insert the chunks into.
@ -9087,13 +9087,13 @@ components:
description: The time to live of the chunks.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- chunks
title: InsertChunksRequest
QueryChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to query.
@ -9113,7 +9113,7 @@ components:
description: The parameters of the query.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- query
title: QueryChunksRequest
QueryChunksResponse:

View file

@ -13084,7 +13084,7 @@
},
"description": "List of documents to index in the RAG system"
},
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "ID of the vector database to store the document embeddings"
},
@ -13096,7 +13096,7 @@
"additionalProperties": false,
"required": [
"documents",
"vector_db_id",
"vector_store_id",
"chunk_size_in_tokens"
],
"title": "InsertRequest"
@ -13287,7 +13287,7 @@
"$ref": "#/components/schemas/InterleavedContent",
"description": "The query content to search for in the indexed documents"
},
"vector_db_ids": {
"vector_store_ids": {
"type": "array",
"items": {
"type": "string"
@ -13302,7 +13302,7 @@
"additionalProperties": false,
"required": [
"content",
"vector_db_ids"
"vector_store_ids"
],
"title": "QueryRequest"
},
@ -13595,7 +13595,7 @@
"InsertChunksRequest": {
"type": "object",
"properties": {
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "The identifier of the vector database to insert the chunks into."
},
@ -13613,7 +13613,7 @@
},
"additionalProperties": false,
"required": [
"vector_db_id",
"vector_store_id",
"chunks"
],
"title": "InsertChunksRequest"
@ -13621,7 +13621,7 @@
"QueryChunksRequest": {
"type": "object",
"properties": {
"vector_db_id": {
"vector_store_id": {
"type": "string",
"description": "The identifier of the vector database to query."
},
@ -13658,7 +13658,7 @@
},
"additionalProperties": false,
"required": [
"vector_db_id",
"vector_store_id",
"query"
],
"title": "QueryChunksRequest"
@ -15719,7 +15719,7 @@
"const": "memory_retrieval",
"default": "memory_retrieval"
},
"vector_db_ids": {
"vector_store_ids": {
"type": "string",
"description": "The IDs of the vector databases to retrieve context from."
},
@ -15733,7 +15733,7 @@
"turn_id",
"step_id",
"step_type",
"vector_db_ids",
"vector_store_ids",
"inserted_context"
],
"title": "MemoryRetrievalStep",

View file

@ -9862,7 +9862,7 @@ components:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_db_id:
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
@ -9873,7 +9873,7 @@ components:
additionalProperties: false
required:
- documents
- vector_db_id
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
@ -10044,7 +10044,7 @@ components:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_db_ids:
vector_store_ids:
type: array
items:
type: string
@ -10057,7 +10057,7 @@ components:
additionalProperties: false
required:
- content
- vector_db_ids
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
@ -10281,7 +10281,7 @@ components:
InsertChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to insert the chunks into.
@ -10300,13 +10300,13 @@ components:
description: The time to live of the chunks.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- chunks
title: InsertChunksRequest
QueryChunksRequest:
type: object
properties:
vector_db_id:
vector_store_id:
type: string
description: >-
The identifier of the vector database to query.
@ -10326,7 +10326,7 @@ components:
description: The parameters of the query.
additionalProperties: false
required:
- vector_db_id
- vector_store_id
- query
title: QueryChunksRequest
QueryChunksResponse:
@ -11844,7 +11844,7 @@ components:
description: Type of the step in an agent turn.
const: memory_retrieval
default: memory_retrieval
vector_db_ids:
vector_store_ids:
type: string
description: >-
The IDs of the vector databases to retrieve context from.
@ -11857,7 +11857,7 @@ components:
- turn_id
- step_id
- step_type
- vector_db_ids
- vector_store_ids
- inserted_context
title: MemoryRetrievalStep
description: >-

View file

@ -30,8 +30,10 @@ materialize_telemetry_configs() {
local otel_cfg="${dest}/otel-collector-config.yaml"
local prom_cfg="${dest}/prometheus.yml"
local graf_cfg="${dest}/grafana-datasources.yaml"
local graf_dash_cfg="${dest}/grafana-dashboards.yaml"
local dash_json="${dest}/llama-stack-dashboard.json"
for asset in "$otel_cfg" "$prom_cfg" "$graf_cfg"; do
for asset in "$otel_cfg" "$prom_cfg" "$graf_cfg" "$graf_dash_cfg" "$dash_json"; do
if [ -e "$asset" ]; then
die "Telemetry asset ${asset} already exists; refusing to overwrite"
fi
@ -103,6 +105,7 @@ datasources:
type: prometheus
access: proxy
url: http://prometheus:9090
uid: prometheus
isDefault: true
editable: true
@ -112,6 +115,224 @@ datasources:
url: http://jaeger:16686
editable: true
EOF
cat <<'EOF' > "$graf_dash_cfg"
apiVersion: 1
providers:
- name: 'Llama Stack'
orgId: 1
folder: ''
type: file
disableDeletion: false
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/provisioning/dashboards
EOF
# Copy the dashboard JSON inline to avoid line-length issues
cat > "$dash_json" <<'DASHBOARD_JSON'
{
"annotations": {
"list": []
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"links": [],
"liveNow": false,
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [{"color": "green", "value": null}]
}
}
},
"gridPos": {"h": 8, "w": 12, "x": 0, "y": 0},
"id": 1,
"options": {
"legend": {"calcs": [], "displayMode": "table", "placement": "bottom", "showLegend": true},
"tooltip": {"mode": "multi", "sort": "none"}
},
"targets": [
{
"datasource": {"type": "prometheus", "uid": "prometheus"},
"expr": "llama_stack_completion_tokens_total",
"legendFormat": "{{model_id}} ({{provider_id}})",
"refId": "A"
}
],
"title": "Completion Tokens",
"type": "timeseries"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"custom": {"drawStyle": "line", "lineInterpolation": "linear", "showPoints": "auto", "fillOpacity": 10},
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]}
}
},
"gridPos": {"h": 8, "w": 12, "x": 12, "y": 0},
"id": 2,
"options": {
"legend": {"calcs": [], "displayMode": "table", "placement": "bottom", "showLegend": true},
"tooltip": {"mode": "multi", "sort": "none"}
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "llama_stack_prompt_tokens_total", "legendFormat": "Prompt - {{model_id}}", "refId": "A"},
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "llama_stack_tokens_total", "legendFormat": "Total - {{model_id}}", "refId": "B"}
],
"title": "Prompt & Total Tokens",
"type": "timeseries"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"custom": {"drawStyle": "line", "lineInterpolation": "linear", "showPoints": "auto", "fillOpacity": 10},
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]},
"unit": "ms"
}
},
"gridPos": {"h": 8, "w": 12, "x": 0, "y": 8},
"id": 3,
"options": {
"legend": {"calcs": [], "displayMode": "list", "placement": "bottom", "showLegend": true},
"tooltip": {"mode": "multi", "sort": "none"}
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "histogram_quantile(0.95, rate(llama_stack_http_server_duration_milliseconds_bucket[5m]))", "legendFormat": "p95", "refId": "A"},
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "histogram_quantile(0.99, rate(llama_stack_http_server_duration_milliseconds_bucket[5m]))", "legendFormat": "p99", "refId": "B"}
],
"title": "HTTP Request Duration (p95, p99)",
"type": "timeseries"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]}
}
},
"gridPos": {"h": 8, "w": 6, "x": 12, "y": 8},
"id": 4,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"reduceOptions": {"calcs": ["lastNotNull"], "fields": "", "values": false},
"textMode": "auto"
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "sum(llama_stack_http_server_duration_milliseconds_count)", "refId": "A"}
],
"title": "Total Requests",
"type": "stat"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]}
}
},
"gridPos": {"h": 8, "w": 6, "x": 18, "y": 8},
"id": 5,
"options": {
"colorMode": "value",
"graphMode": "none",
"justifyMode": "auto",
"orientation": "auto",
"reduceOptions": {"calcs": ["lastNotNull"], "fields": "", "values": false},
"textMode": "auto"
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "sum(llama_stack_http_server_active_requests)", "refId": "A"}
],
"title": "Active Requests",
"type": "stat"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"custom": {"drawStyle": "line", "lineInterpolation": "linear", "showPoints": "auto", "fillOpacity": 10},
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]},
"unit": "reqps"
}
},
"gridPos": {"h": 8, "w": 12, "x": 0, "y": 16},
"id": 6,
"options": {
"legend": {"calcs": [], "displayMode": "list", "placement": "bottom", "showLegend": true},
"tooltip": {"mode": "multi", "sort": "none"}
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "rate(llama_stack_http_server_duration_milliseconds_count[5m])", "legendFormat": "{{http_target}} - {{http_status_code}}", "refId": "A"}
],
"title": "Request Rate",
"type": "timeseries"
},
{
"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"},
"fieldConfig": {
"defaults": {
"custom": {"drawStyle": "line", "lineInterpolation": "linear", "showPoints": "auto", "fillOpacity": 10},
"mappings": [],
"thresholds": {"mode": "absolute", "steps": [{"color": "green", "value": null}]},
"unit": "Bps"
}
},
"gridPos": {"h": 8, "w": 12, "x": 12, "y": 16},
"id": 7,
"options": {
"legend": {"calcs": [], "displayMode": "list", "placement": "bottom", "showLegend": true},
"tooltip": {"mode": "multi", "sort": "none"}
},
"targets": [
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "rate(llama_stack_http_server_request_size_bytes_sum[5m])", "legendFormat": "Request", "refId": "A"},
{"datasource": {"type": "prometheus", "uid": "$(DS_PROMETHEUS}"}, "expr": "rate(llama_stack_http_server_response_size_bytes_sum[5m])", "legendFormat": "Response", "refId": "B"}
],
"title": "Request/Response Sizes",
"type": "timeseries"
}
],
"refresh": "5s",
"schemaVersion": 38,
"tags": ["llama-stack"],
"templating": {"list": []},
"time": {"from": "now-15m", "to": "now"},
"timepicker": {},
"timezone": "browser",
"title": "Llama Stack Metrics",
"uid": "llama-stack-metrics",
"version": 0,
"weekStart": ""
}
DASHBOARD_JSON
}
# Cleanup function to remove temporary files
@ -372,6 +593,8 @@ if [ "$WITH_TELEMETRY" = true ]; then
-e GF_SECURITY_ADMIN_PASSWORD=admin \
-e GF_USERS_ALLOW_SIGN_UP=false \
-v "${TELEMETRY_ASSETS_DIR}/grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml:Z" \
-v "${TELEMETRY_ASSETS_DIR}/grafana-dashboards.yaml:/etc/grafana/provisioning/dashboards/dashboards.yaml:Z" \
-v "${TELEMETRY_ASSETS_DIR}/llama-stack-dashboard.json:/etc/grafana/provisioning/dashboards/llama-stack-dashboard.json:Z" \
docker.io/grafana/grafana:11.0.0 > /dev/null 2>&1; then
die "Grafana startup failed"
fi

View file

@ -0,0 +1,12 @@
apiVersion: 1
providers:
- name: 'Llama Stack'
orgId: 1
folder: ''
type: file
disableDeletion: false
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/provisioning/dashboards

View file

@ -5,6 +5,7 @@ datasources:
type: prometheus
access: proxy
url: http://prometheus:9090
uid: prometheus
isDefault: true
editable: true

View file

@ -0,0 +1,457 @@
{
"annotations": {
"list": []
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"links": [],
"liveNow": false,
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
},
"id": 1,
"options": {
"legend": {
"calcs": [],
"displayMode": "table",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_completion_tokens_total",
"legendFormat": "{{model_id}} ({{provider_id}})",
"refId": "A"
}
],
"title": "Completion Tokens",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 2,
"options": {
"legend": {
"calcs": [],
"displayMode": "table",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_prompt_tokens_total",
"legendFormat": "Prompt - {{model_id}}",
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_tokens_total",
"legendFormat": "Total - {{model_id}}",
"refId": "B"
}
],
"title": "Prompt & Total Tokens",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
},
"unit": "ms"
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 3,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "histogram_quantile(0.95, rate(llama_stack_http_server_duration_milliseconds_bucket[5m]))",
"legendFormat": "p95",
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "histogram_quantile(0.99, rate(llama_stack_http_server_duration_milliseconds_bucket[5m]))",
"legendFormat": "p99",
"refId": "B"
}
],
"title": "HTTP Request Duration (p95, p99)",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
}
},
"gridPos": {
"h": 8,
"w": 6,
"x": 12,
"y": 8
},
"id": 4,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"textMode": "auto"
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "sum(llama_stack_http_server_duration_milliseconds_count)",
"refId": "A"
}
],
"title": "Total Requests",
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
}
},
"gridPos": {
"h": 8,
"w": 6,
"x": 18,
"y": 8
},
"id": 5,
"options": {
"colorMode": "value",
"graphMode": "none",
"justifyMode": "auto",
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"textMode": "auto"
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "sum(llama_stack_http_server_active_requests)",
"refId": "A"
}
],
"title": "Active Requests",
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
},
"unit": "reqps"
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 6,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "rate(llama_stack_http_server_duration_milliseconds_count[5m])",
"legendFormat": "{{http_target}} - {{http_status_code}}",
"refId": "A"
}
],
"title": "Request Rate",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
},
"unit": "Bps"
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 7,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "rate(llama_stack_http_server_request_size_bytes_sum[5m])",
"legendFormat": "Request",
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "rate(llama_stack_http_server_response_size_bytes_sum[5m])",
"legendFormat": "Response",
"refId": "B"
}
],
"title": "Request/Response Sizes",
"type": "timeseries"
}
],
"refresh": "5s",
"schemaVersion": 38,
"tags": [
"llama-stack"
],
"templating": {
"list": []
},
"time": {
"from": "now-15m",
"to": "now"
},
"timepicker": {},
"timezone": "browser",
"title": "Llama Stack Metrics",
"uid": "llama-stack-metrics",
"version": 0,
"weekStart": ""
}

View file

@ -135,6 +135,8 @@ $CONTAINER_RUNTIME run -d --name grafana \
-e GF_SECURITY_ADMIN_PASSWORD=admin \
-e GF_USERS_ALLOW_SIGN_UP=false \
-v "$SCRIPT_DIR/grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml:Z" \
-v "$SCRIPT_DIR/grafana-dashboards.yaml:/etc/grafana/provisioning/dashboards/dashboards.yaml:Z" \
-v "$SCRIPT_DIR/llama-stack-dashboard.json:/etc/grafana/provisioning/dashboards/llama-stack-dashboard.json:Z" \
docker.io/grafana/grafana:11.0.0
# Wait for services to start

View file

@ -149,13 +149,13 @@ class ShieldCallStep(StepCommon):
class MemoryRetrievalStep(StepCommon):
"""A memory retrieval step in an agent turn.
:param vector_db_ids: The IDs of the vector databases to retrieve context from.
:param vector_store_ids: The IDs of the vector databases to retrieve context from.
:param inserted_context: The context retrieved from the vector databases.
"""
step_type: Literal[StepType.memory_retrieval] = StepType.memory_retrieval
# TODO: should this be List[str]?
vector_db_ids: str
vector_store_ids: str
inserted_context: InterleavedContent

View file

@ -21,8 +21,8 @@ from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
from llama_stack.apis.telemetry import MetricResponseMixin
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
from llama_stack.core.telemetry.telemetry import MetricResponseMixin
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.models.llama.datatypes import (
BuiltinTool,

View file

@ -190,13 +190,13 @@ class RAGToolRuntime(Protocol):
async def insert(
self,
documents: list[RAGDocument],
vector_db_id: str,
vector_store_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system.
:param documents: List of documents to index in the RAG system
:param vector_db_id: ID of the vector database to store the document embeddings
:param vector_store_id: ID of the vector database to store the document embeddings
:param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing
"""
...
@ -205,13 +205,13 @@ class RAGToolRuntime(Protocol):
async def query(
self,
content: InterleavedContent,
vector_db_ids: list[str],
vector_store_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent.
:param content: The query content to search for in the indexed documents
:param vector_db_ids: List of vector database IDs to search within
:param vector_store_ids: List of vector database IDs to search within
:param query_config: (Optional) Configuration parameters for the query operation
:returns: RAGQueryResult containing the retrieved content and metadata
"""

View file

@ -529,17 +529,17 @@ class VectorIO(Protocol):
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
# TODO: rename vector_db_id to vector_store_id once Stainless is working
# TODO: rename vector_store_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1)
async def insert_chunks(
self,
vector_db_id: str,
vector_store_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
"""Insert chunks into a vector database.
:param vector_db_id: The identifier of the vector database to insert the chunks into.
:param vector_store_id: The identifier of the vector database to insert the chunks into.
:param chunks: The chunks to insert. Each `Chunk` should contain content which can be interleaved text, images, or other types.
`metadata`: `dict[str, Any]` and `embedding`: `List[float]` are optional.
If `metadata` is provided, you configure how Llama Stack formats the chunk during generation.
@ -548,17 +548,17 @@ class VectorIO(Protocol):
"""
...
# TODO: rename vector_db_id to vector_store_id once Stainless is working
# TODO: rename vector_store_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1)
async def query_chunks(
self,
vector_db_id: str,
vector_store_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
"""Query chunks from a vector database.
:param vector_db_id: The identifier of the vector database to query.
:param vector_store_id: The identifier of the vector database to query.
:param query: The query to search for.
:param params: The parameters of the query.
:returns: A QueryChunksResponse.

View file

@ -312,3 +312,6 @@ class ConversationServiceImpl(Conversations):
logger.debug(f"Deleted item {item_id} from conversation {conversation_id}")
return ConversationItemDeletedResource(id=item_id)
async def shutdown(self) -> None:
pass

View file

@ -230,3 +230,6 @@ class PromptServiceImpl(Prompts):
await self.kvstore.set(default_key, str(version))
return self._deserialize_prompt(data)
async def shutdown(self) -> None:
pass

View file

@ -53,7 +53,7 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletionContentPartTextParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse
from llama_stack.core.telemetry.telemetry import MetricEvent, MetricInResponse
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat

View file

@ -73,27 +73,27 @@ class VectorIORouter(VectorIO):
async def insert_chunks(
self,
vector_db_id: str,
vector_store_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
doc_ids = [chunk.document_id for chunk in chunks[:3]]
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, "
f"VectorIORouter.insert_chunks: {vector_store_id}, {len(chunks)} chunks, "
f"ttl_seconds={ttl_seconds}, chunk_ids={doc_ids}{' and more...' if len(chunks) > 3 else ''}"
)
provider = await self.routing_table.get_provider_impl(vector_db_id)
return await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.insert_chunks(vector_store_id, chunks, ttl_seconds)
async def query_chunks(
self,
vector_db_id: str,
vector_store_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
provider = await self.routing_table.get_provider_impl(vector_db_id)
return await provider.query_chunks(vector_db_id, query, params)
logger.debug(f"VectorIORouter.query_chunks: {vector_store_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.query_chunks(vector_store_id, query, params)
# OpenAI Vector Stores API endpoints
async def openai_create_vector_store(

View file

@ -31,7 +31,6 @@ from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
@ -67,7 +66,6 @@ class LlamaStack(
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
VectorIO,
Eval,

View file

@ -6,7 +6,13 @@
import os
import threading
from typing import Any
from datetime import datetime
from enum import Enum
from typing import (
Annotated,
Any,
Literal,
)
from opentelemetry import metrics, trace
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
@ -16,21 +22,399 @@ from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
from pydantic import BaseModel, Field
from llama_stack.apis.telemetry import (
Event,
MetricEvent,
SpanEndPayload,
SpanStartPayload,
SpanStatus,
StructuredLogEvent,
UnstructuredLogEvent,
)
from llama_stack.apis.telemetry import (
Telemetry as TelemetryBase,
)
from llama_stack.core.telemetry.tracing import ROOT_SPAN_MARKERS
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import Primitive
from llama_stack.schema_utils import json_schema_type, register_schema
ROOT_SPAN_MARKERS = ["__root__", "__root_span__"]
@json_schema_type
class SpanStatus(Enum):
"""The status of a span indicating whether it completed successfully or with an error.
:cvar OK: Span completed successfully without errors
:cvar ERROR: Span completed with an error or failure
"""
OK = "ok"
ERROR = "error"
@json_schema_type
class Span(BaseModel):
"""A span representing a single operation within a trace.
:param span_id: Unique identifier for the span
:param trace_id: Unique identifier for the trace this span belongs to
:param parent_span_id: (Optional) Unique identifier for the parent span, if this is a child span
:param name: Human-readable name describing the operation this span represents
:param start_time: Timestamp when the operation began
:param end_time: (Optional) Timestamp when the operation finished, if completed
:param attributes: (Optional) Key-value pairs containing additional metadata about the span
"""
span_id: str
trace_id: str
parent_span_id: str | None = None
name: str
start_time: datetime
end_time: datetime | None = None
attributes: dict[str, Any] | None = Field(default_factory=lambda: {})
def set_attribute(self, key: str, value: Any):
if self.attributes is None:
self.attributes = {}
self.attributes[key] = value
@json_schema_type
class Trace(BaseModel):
"""A trace representing the complete execution path of a request across multiple operations.
:param trace_id: Unique identifier for the trace
:param root_span_id: Unique identifier for the root span that started this trace
:param start_time: Timestamp when the trace began
:param end_time: (Optional) Timestamp when the trace finished, if completed
"""
trace_id: str
root_span_id: str
start_time: datetime
end_time: datetime | None = None
@json_schema_type
class EventType(Enum):
"""The type of telemetry event being logged.
:cvar UNSTRUCTURED_LOG: A simple log message with severity level
:cvar STRUCTURED_LOG: A structured log event with typed payload data
:cvar METRIC: A metric measurement with value and unit
"""
UNSTRUCTURED_LOG = "unstructured_log"
STRUCTURED_LOG = "structured_log"
METRIC = "metric"
@json_schema_type
class LogSeverity(Enum):
"""The severity level of a log message.
:cvar VERBOSE: Detailed diagnostic information for troubleshooting
:cvar DEBUG: Debug information useful during development
:cvar INFO: General informational messages about normal operation
:cvar WARN: Warning messages about potentially problematic situations
:cvar ERROR: Error messages indicating failures that don't stop execution
:cvar CRITICAL: Critical error messages indicating severe failures
"""
VERBOSE = "verbose"
DEBUG = "debug"
INFO = "info"
WARN = "warn"
ERROR = "error"
CRITICAL = "critical"
class EventCommon(BaseModel):
"""Common fields shared by all telemetry events.
:param trace_id: Unique identifier for the trace this event belongs to
:param span_id: Unique identifier for the span this event belongs to
:param timestamp: Timestamp when the event occurred
:param attributes: (Optional) Key-value pairs containing additional metadata about the event
"""
trace_id: str
span_id: str
timestamp: datetime
attributes: dict[str, Primitive] | None = Field(default_factory=lambda: {})
@json_schema_type
class UnstructuredLogEvent(EventCommon):
"""An unstructured log event containing a simple text message.
:param type: Event type identifier set to UNSTRUCTURED_LOG
:param message: The log message text
:param severity: The severity level of the log message
"""
type: Literal[EventType.UNSTRUCTURED_LOG] = EventType.UNSTRUCTURED_LOG
message: str
severity: LogSeverity
@json_schema_type
class MetricEvent(EventCommon):
"""A metric event containing a measured value.
:param type: Event type identifier set to METRIC
:param metric: The name of the metric being measured
:param value: The numeric value of the metric measurement
:param unit: The unit of measurement for the metric value
"""
type: Literal[EventType.METRIC] = EventType.METRIC
metric: str # this would be an enum
value: int | float
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
"""A metric value included in API responses.
:param metric: The name of the metric
:param value: The numeric value of the metric
:param unit: (Optional) The unit of measurement for the metric value
"""
metric: str
value: int | float
unit: str | None = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be included with the response
# To do this, we will need to augment all response types with a metrics field.
# We have hit a blocker from stainless SDK that prevents us from doing this.
# The blocker is that if we were to augment the response types that have a data field
# in them like so
# class ListModelsResponse(BaseModel):
# metrics: Optional[List[MetricEvent]] = None
# data: List[Models]
# ...
# The client SDK will need to access the data by using a .data field, which is not
# ergonomic. Stainless SDK does support unwrapping the response type, but it
# requires that the response type to only have a single field.
# We will need a way in the client SDK to signal that the metrics are needed
# and if they are needed, the client SDK has to return the full response type
# without unwrapping it.
class MetricResponseMixin(BaseModel):
"""Mixin class for API responses that can include metrics.
:param metrics: (Optional) List of metrics associated with the API response
"""
metrics: list[MetricInResponse] | None = None
@json_schema_type
class StructuredLogType(Enum):
"""The type of structured log event payload.
:cvar SPAN_START: Event indicating the start of a new span
:cvar SPAN_END: Event indicating the completion of a span
"""
SPAN_START = "span_start"
SPAN_END = "span_end"
@json_schema_type
class SpanStartPayload(BaseModel):
"""Payload for a span start event.
:param type: Payload type identifier set to SPAN_START
:param name: Human-readable name describing the operation this span represents
:param parent_span_id: (Optional) Unique identifier for the parent span, if this is a child span
"""
type: Literal[StructuredLogType.SPAN_START] = StructuredLogType.SPAN_START
name: str
parent_span_id: str | None = None
@json_schema_type
class SpanEndPayload(BaseModel):
"""Payload for a span end event.
:param type: Payload type identifier set to SPAN_END
:param status: The final status of the span indicating success or failure
"""
type: Literal[StructuredLogType.SPAN_END] = StructuredLogType.SPAN_END
status: SpanStatus
StructuredLogPayload = Annotated[
SpanStartPayload | SpanEndPayload,
Field(discriminator="type"),
]
register_schema(StructuredLogPayload, name="StructuredLogPayload")
@json_schema_type
class StructuredLogEvent(EventCommon):
"""A structured log event containing typed payload data.
:param type: Event type identifier set to STRUCTURED_LOG
:param payload: The structured payload data for the log event
"""
type: Literal[EventType.STRUCTURED_LOG] = EventType.STRUCTURED_LOG
payload: StructuredLogPayload
Event = Annotated[
UnstructuredLogEvent | MetricEvent | StructuredLogEvent,
Field(discriminator="type"),
]
register_schema(Event, name="Event")
@json_schema_type
class EvalTrace(BaseModel):
"""A trace record for evaluation purposes.
:param session_id: Unique identifier for the evaluation session
:param step: The evaluation step or phase identifier
:param input: The input data for the evaluation
:param output: The actual output produced during evaluation
:param expected_output: The expected output for comparison during evaluation
"""
session_id: str
step: str
input: str
output: str
expected_output: str
@json_schema_type
class SpanWithStatus(Span):
"""A span that includes status information.
:param status: (Optional) The current status of the span
"""
status: SpanStatus | None = None
@json_schema_type
class QueryConditionOp(Enum):
"""Comparison operators for query conditions.
:cvar EQ: Equal to comparison
:cvar NE: Not equal to comparison
:cvar GT: Greater than comparison
:cvar LT: Less than comparison
"""
EQ = "eq"
NE = "ne"
GT = "gt"
LT = "lt"
@json_schema_type
class QueryCondition(BaseModel):
"""A condition for filtering query results.
:param key: The attribute key to filter on
:param op: The comparison operator to apply
:param value: The value to compare against
"""
key: str
op: QueryConditionOp
value: Any
class QueryTracesResponse(BaseModel):
"""Response containing a list of traces.
:param data: List of traces matching the query criteria
"""
data: list[Trace]
class QuerySpansResponse(BaseModel):
"""Response containing a list of spans.
:param data: List of spans matching the query criteria
"""
data: list[Span]
class QuerySpanTreeResponse(BaseModel):
"""Response containing a tree structure of spans.
:param data: Dictionary mapping span IDs to spans with status information
"""
data: dict[str, SpanWithStatus]
class MetricQueryType(Enum):
"""The type of metric query to perform.
:cvar RANGE: Query metrics over a time range
:cvar INSTANT: Query metrics at a specific point in time
"""
RANGE = "range"
INSTANT = "instant"
class MetricLabelOperator(Enum):
"""Operators for matching metric labels.
:cvar EQUALS: Label value must equal the specified value
:cvar NOT_EQUALS: Label value must not equal the specified value
:cvar REGEX_MATCH: Label value must match the specified regular expression
:cvar REGEX_NOT_MATCH: Label value must not match the specified regular expression
"""
EQUALS = "="
NOT_EQUALS = "!="
REGEX_MATCH = "=~"
REGEX_NOT_MATCH = "!~"
class MetricLabelMatcher(BaseModel):
"""A matcher for filtering metrics by label values.
:param name: The name of the label to match
:param value: The value to match against
:param operator: The comparison operator to use for matching
"""
name: str
value: str
operator: MetricLabelOperator = MetricLabelOperator.EQUALS
@json_schema_type
class MetricLabel(BaseModel):
"""A label associated with a metric.
:param name: The name of the label
:param value: The value of the label
"""
name: str
value: str
@json_schema_type
class MetricDataPoint(BaseModel):
"""A single data point in a metric time series.
:param timestamp: Unix timestamp when the metric value was recorded
:param value: The numeric value of the metric at this timestamp
"""
timestamp: int
value: float
unit: str
@json_schema_type
class MetricSeries(BaseModel):
"""A time series of metric data points.
:param metric: The name of the metric
:param labels: List of labels associated with this metric series
:param values: List of data points in chronological order
"""
metric: str
labels: list[MetricLabel]
values: list[MetricDataPoint]
class QueryMetricsResponse(BaseModel):
"""Response containing metric time series data.
:param data: List of metric series matching the query criteria
"""
data: list[MetricSeries]
_GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
"active_spans": {},
@ -49,7 +433,7 @@ def is_tracing_enabled(tracer):
return span.is_recording()
class Telemetry(TelemetryBase):
class Telemetry:
def __init__(self) -> None:
self.meter = None

View file

@ -17,7 +17,8 @@ from datetime import UTC, datetime
from functools import wraps
from typing import Any, Self
from llama_stack.apis.telemetry import (
from llama_stack.core.telemetry.telemetry import (
ROOT_SPAN_MARKERS,
Event,
LogSeverity,
Span,
@ -47,7 +48,6 @@ if not _fallback_logger.handlers:
INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
ROOT_SPAN_MARKERS = ["__root__", "__root_span__"]
# The logical root span may not be visible to this process if a parent context
# is passed in. The local root span is the first local span in a trace.
LOCAL_ROOT_SPAN_MARKER = "__local_root_span__"

View file

@ -488,13 +488,13 @@ class ChatAgent(ShieldRunnerMixin):
session_info = await self.storage.get_session_info(session_id)
# if the session has a memory bank id, let the memory tool use it
if session_info and session_info.vector_db_id:
if session_info and session_info.vector_store_id:
for tool_name in self.tool_name_to_args.keys():
if tool_name == MEMORY_QUERY_TOOL:
if "vector_db_ids" not in self.tool_name_to_args[tool_name]:
self.tool_name_to_args[tool_name]["vector_db_ids"] = [session_info.vector_db_id]
if "vector_store_ids" not in self.tool_name_to_args[tool_name]:
self.tool_name_to_args[tool_name]["vector_store_ids"] = [session_info.vector_store_id]
else:
self.tool_name_to_args[tool_name]["vector_db_ids"].append(session_info.vector_db_id)
self.tool_name_to_args[tool_name]["vector_store_ids"].append(session_info.vector_store_id)
output_attachments = []

View file

@ -22,7 +22,7 @@ log = get_logger(name=__name__, category="agents::meta_reference")
class AgentSessionInfo(Session):
# TODO: is this used anywhere?
vector_db_id: str | None = None
vector_store_id: str | None = None
started_at: datetime
owner: User | None = None
identifier: str | None = None
@ -93,12 +93,12 @@ class AgentPersistence:
return session_info
async def add_vector_db_to_session(self, session_id: str, vector_db_id: str):
async def add_vector_db_to_session(self, session_id: str, vector_store_id: str):
session_info = await self.get_session_if_accessible(session_id)
if session_info is None:
raise SessionNotFoundError(session_id)
session_info.vector_db_id = vector_db_id
session_info.vector_store_id = vector_store_id
await self.kvstore.set(
key=f"session:{self.agent_id}:{session_id}",
value=session_info.model_dump_json(),

View file

@ -119,7 +119,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
async def insert(
self,
documents: list[RAGDocument],
vector_db_id: str,
vector_store_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
if not documents:
@ -158,14 +158,14 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
try:
await self.vector_io_api.openai_attach_file_to_vector_store(
vector_store_id=vector_db_id,
vector_store_id=vector_store_id,
file_id=created_file.id,
attributes=doc.metadata,
chunking_strategy=chunking_strategy,
)
except Exception as e:
log.error(
f"Failed to attach file {created_file.id} to vector store {vector_db_id} for document {doc.document_id}: {e}"
f"Failed to attach file {created_file.id} to vector store {vector_store_id} for document {doc.document_id}: {e}"
)
continue
@ -176,10 +176,10 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
async def query(
self,
content: InterleavedContent,
vector_db_ids: list[str],
vector_store_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
if not vector_db_ids:
if not vector_store_ids:
raise ValueError(
"No vector DBs were provided to the knowledge search tool. Please provide at least one vector DB ID."
)
@ -192,7 +192,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
)
tasks = [
self.vector_io_api.query_chunks(
vector_db_id=vector_db_id,
vector_store_id=vector_store_id,
query=query,
params={
"mode": query_config.mode,
@ -201,18 +201,18 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
"ranker": query_config.ranker,
},
)
for vector_db_id in vector_db_ids
for vector_store_id in vector_store_ids
]
results: list[QueryChunksResponse] = await asyncio.gather(*tasks)
chunks = []
scores = []
for vector_db_id, result in zip(vector_db_ids, results, strict=False):
for vector_store_id, result in zip(vector_store_ids, results, strict=False):
for chunk, score in zip(result.chunks, result.scores, strict=False):
if not hasattr(chunk, "metadata") or chunk.metadata is None:
chunk.metadata = {}
chunk.metadata["vector_db_id"] = vector_db_id
chunk.metadata["vector_store_id"] = vector_store_id
chunks.append(chunk)
scores.append(score)
@ -250,7 +250,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
metadata_keys_to_exclude_from_context = [
"token_count",
"metadata_token_count",
"vector_db_id",
"vector_store_id",
]
metadata_for_context = {}
for k in chunk_metadata_keys_to_include_from_context:
@ -275,7 +275,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
"document_ids": [c.document_id for c in chunks[: len(picked)]],
"chunks": [c.content for c in chunks[: len(picked)]],
"scores": scores[: len(picked)],
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],
"vector_store_ids": [c.metadata["vector_store_id"] for c in chunks[: len(picked)]],
},
)
@ -309,7 +309,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
)
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
vector_db_ids = kwargs.get("vector_db_ids", [])
vector_store_ids = kwargs.get("vector_store_ids", [])
query_config = kwargs.get("query_config")
if query_config:
query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config)
@ -319,7 +319,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
query = kwargs["query"]
result = await self.query(
content=query,
vector_db_ids=vector_db_ids,
vector_store_ids=vector_store_ids,
query_config=query_config,
)

View file

@ -248,19 +248,19 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoco
del self.cache[vector_store_id]
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = self.cache.get(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = self.cache.get(vector_store_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}")
raise ValueError(f"Vector DB {vector_store_id} not found. found: {self.cache.keys()}")
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = self.cache.get(vector_db_id)
index = self.cache.get(vector_store_id)
if index is None:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
return await index.query_chunks(query, params)

View file

@ -447,20 +447,20 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresPro
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
# The VectorStoreWithIndex helper is expected to compute embeddings via the inference_api
# and then call our index's add_chunks.
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
self, vector_store_id: str, query: Any, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:

View file

@ -163,14 +163,14 @@ The SQLite-vec provider supports three search modes:
Example with hybrid search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
)
# Using RRF ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -182,7 +182,7 @@ response = await vector_io.query_chunks(
# Using weighted ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={
"mode": "hybrid",
@ -196,7 +196,7 @@ response = await vector_io.query_chunks(
Example with explicit vector search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
)
@ -205,7 +205,7 @@ response = await vector_io.query_chunks(
Example with keyword search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
vector_store_id="my_db",
query="your query here",
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
)

View file

@ -169,20 +169,20 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
raise ValueError(f"Vector DB {vector_store_id} not found in Chroma")
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
raise ValueError(f"Vector DB {vector_store_id} not found in Chroma")
return await index.query_chunks(query, params)

View file

@ -348,19 +348,19 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:

View file

@ -399,14 +399,14 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
assert self.kvstore is not None
await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_store_id}")
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
return await index.query_chunks(query, params)
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex:

View file

@ -222,19 +222,19 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
self.cache[vector_store_id] = index
return index
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
return await index.query_chunks(query, params)

View file

@ -366,19 +366,19 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv
self.cache[vector_store_id] = index
return index
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
async def insert_chunks(self, vector_store_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
self, vector_store_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_store_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_store_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
raise VectorStoreNotFoundError(vector_store_id)
return await index.query_chunks(query, params)

View file

@ -333,7 +333,7 @@ class OpenAIVectorStoreMixin(ABC):
@abstractmethod
async def insert_chunks(
self,
vector_db_id: str,
vector_store_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
@ -342,7 +342,7 @@ class OpenAIVectorStoreMixin(ABC):
@abstractmethod
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
self, vector_store_id: str, query: Any, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
"""Query chunks from a vector database (provider-specific implementation)."""
pass
@ -609,7 +609,7 @@ class OpenAIVectorStoreMixin(ABC):
# TODO: Add support for ranking_options.ranker
response = await self.query_chunks(
vector_db_id=vector_store_id,
vector_store_id=vector_store_id,
query=search_query,
params=params,
)
@ -803,7 +803,7 @@ class OpenAIVectorStoreMixin(ABC):
)
else:
await self.insert_chunks(
vector_db_id=vector_store_id,
vector_store_id=vector_store_id,
chunks=chunks,
)
vector_store_file_object.status = "completed"

View file

@ -367,7 +367,7 @@ def test_openai_vector_store_with_chunks(
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -434,7 +434,7 @@ def test_openai_vector_store_search_relevance(
# Insert chunks using native API
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -484,7 +484,7 @@ def test_openai_vector_store_search_with_ranking_options(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -544,7 +544,7 @@ def test_openai_vector_store_search_with_high_score_filter(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -610,7 +610,7 @@ def test_openai_vector_store_search_with_max_num_results(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -1175,7 +1175,7 @@ def test_openai_vector_store_search_modes(
)
client_with_models.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
query = "Python programming language"

View file

@ -123,12 +123,12 @@ def test_insert_chunks(
actual_vector_store_id = create_response.id
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=sample_chunks,
)
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="What is the capital of France?",
)
assert response is not None
@ -137,7 +137,7 @@ def test_insert_chunks(
query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query=query,
)
assert response is not None
@ -174,13 +174,13 @@ def test_insert_chunks_with_precomputed_embeddings(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None),
)
@ -224,13 +224,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="duplicate",
params=vector_io_provider_params_dict.get(provider, None),
)

View file

@ -23,14 +23,14 @@ class TestRagQuery:
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
await rag_tool.query(content=MagicMock(), vector_store_ids=[])
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
content = "test query content"
vector_db_ids = ["db1"]
vector_store_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
@ -55,7 +55,7 @@ class TestRagQuery:
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
result = await rag_tool.query(content=content, vector_store_ids=vector_store_ids)
assert result is not None
expected_metadata_string = (
@ -90,7 +90,7 @@ class TestRagQuery:
files_api=MagicMock(),
)
vector_db_ids = ["db1", "db2"]
vector_store_ids = ["db1", "db2"]
# Fake chunks from each DB
chunk_metadata1 = ChunkMetadata(
@ -101,7 +101,7 @@ class TestRagQuery:
)
chunk1 = Chunk(
content="chunk from db1",
metadata={"vector_db_id": "db1", "document_id": "doc1"},
metadata={"vector_store_id": "db1", "document_id": "doc1"},
stored_chunk_id="c1",
chunk_metadata=chunk_metadata1,
)
@ -114,7 +114,7 @@ class TestRagQuery:
)
chunk2 = Chunk(
content="chunk from db2",
metadata={"vector_db_id": "db2", "document_id": "doc2"},
metadata={"vector_store_id": "db2", "document_id": "doc2"},
stored_chunk_id="c2",
chunk_metadata=chunk_metadata2,
)
@ -126,13 +126,13 @@ class TestRagQuery:
]
)
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
result = await rag_tool.query(content="test", vector_store_ids=vector_store_ids)
returned_chunks = result.metadata["chunks"]
returned_scores = result.metadata["scores"]
returned_doc_ids = result.metadata["document_ids"]
returned_vector_db_ids = result.metadata["vector_db_ids"]
returned_vector_store_ids = result.metadata["vector_store_ids"]
assert returned_chunks == ["chunk from db1", "chunk from db2"]
assert returned_scores == (0.9, 0.8)
assert returned_doc_ids == ["doc1", "doc2"]
assert returned_vector_db_ids == ["db1", "db2"]
assert returned_vector_store_ids == ["db1", "db2"]