chore: Added openai compatible vector io endpoints for chromadb

This commit is contained in:
sarthakdeshpande 2025-06-22 22:05:20 +05:30
parent 6fde601765
commit e9c443a91f
4 changed files with 127 additions and 95 deletions

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]):
ChromaVectorIOAdapter,
)
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -12,6 +12,6 @@ from .config import ChromaVectorIOConfig
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]):
from .chroma import ChromaVectorIOAdapter
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -6,12 +6,15 @@
import asyncio
import json
import logging
import uuid
from typing import Any
from urllib.parse import urlparse
import chromadb
from chromadb.errors import NotFoundError
from numpy.typing import NDArray
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
@ -23,6 +26,7 @@ from llama_stack.apis.vector_io import (
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
VectorStoreFileDeleteResponse,
)
from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
@ -32,6 +36,7 @@ from llama_stack.apis.vector_io.vector_io import (
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
VectorDBWithIndex,
@ -123,16 +128,20 @@ class ChromaIndex(EmbeddingIndex):
raise NotImplementedError("Hybrid search is not supported in Chroma")
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
def __init__(
self,
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
inference_api: Api.inference,
files_api: Files | None
) -> None:
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
self.config = config
self.inference_api = inference_api
self.vector_db_store = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
self.files_api = files_api
self.metadata_collection_name = "openai_vector_stores_metadata"
self.client = None
self.cache = {}
@ -149,6 +158,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
else:
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
self.client = chromadb.PersistentClient(path=self.config.db_path)
self.openai_vector_stores = await self._load_openai_vector_stores()
async def shutdown(self) -> None:
pass
@ -205,101 +215,123 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
self.cache[vector_db_id] = index
return index
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
try:
collection = await maybe_await(self.client.get_collection(name=self.metadata_collection_name))
except NotFoundError:
collection = await maybe_await(
self.client.create_collection(name=self.metadata_collection_name, metadata={
"description": "Collection to store metadata for OpenAI vector stores"
})
)
await maybe_await(
collection.add(
ids=[store_id],
metadatas=[{"store_id": store_id, "metadata": json.dumps(store_info)}],
)
)
self.openai_vector_stores[store_id] = store_info
except Exception as e:
log.error(f"Error saving openai vector store {store_id}: {e}")
raise
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
openai_vector_stores = {}
try:
collection = await maybe_await(self.client.get_collection(name=self.metadata_collection_name))
except NotFoundError:
return openai_vector_stores
try:
collection_count = await maybe_await(collection.count())
if collection_count == 0:
return openai_vector_stores
offset = 0
batch_size = 100
while True:
result = await maybe_await(
collection.get(
where={"store_id": {"$exists": True}},
offset=offset,
limit=batch_size,
include=["documents", "metadatas"],
)
)
if not result['ids'] or len(result['ids']) == 0:
break
for i, doc_id in enumerate(result['ids']):
metadata = result.get('metadatas', [{}])[i] if i < len(result.get('metadatas', [])) else {}
# Extract store_id (assuming it's in metadata)
store_id = metadata.get('store_id')
if store_id:
# If metadata contains JSON string, parse it
metadata_json = metadata.get('metadata')
if metadata_json:
try:
if isinstance(metadata_json, str):
store_info = json.loads(metadata_json)
else:
store_info = metadata_json
openai_vector_stores[store_id] = store_info
except json.JSONDecodeError:
log.error(f"failed to decode metadata for store_id {store_id}")
offset += batch_size
except Exception as e:
log.error(f"error loading openai vector stores: {e}")
return openai_vector_stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
try:
if store_id in self.openai_vector_stores:
collection = await maybe_await(self.client.get_collection(name=self.metadata_collection_name))
await maybe_await(
collection.update(
ids=[store_id],
metadatas=[{"store_id": store_id, "metadata": json.dumps(store_info)}],
)
)
self.openai_vector_stores[store_id] = store_info
except NotFoundError:
log.error(f"Collection {self.metadata_collection_name} not found")
except Exception as e:
log.error(f"Error updating openai vector store {store_id}: {e}")
raise
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
try:
collection = await maybe_await(self.client.get_collection(name=self.metadata_collection_name))
await maybe_await(collection.delete(ids=[store_id]))
except ValueError:
log.error(f"Collection {self.metadata_collection_name} not found")
except Exception as e:
log.error(f"Error deleting openai vector store {store_id}: {e}")
raise
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from persistent storage."""
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from persistent storage."""
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from persistent storage."""
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to persistent storage."""
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: SearchRankingOptions | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in persistent storage."""
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -22,7 +22,7 @@ logger = logging.getLogger(__name__)
def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
for p in vector_io_providers:
if p.provider_type in ["inline::faiss", "inline::sqlite-vec"]:
if p.provider_type in ["inline::faiss", "inline::sqlite-vec", "inline::chromadb"]:
return
pytest.skip("OpenAI vector stores are not supported by any provider")