mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
docs: Add OpenAI API compatibility page (#2316)
# What does this PR do? This adds some initial content documenting our OpenAI compatible APIs - Responses, Chat Completions, Completions, and Models - along with instructions on how to use them via OpenAI or Llama Stack clients and some simple examples for each. It's not a lot of content, but it's a start so that users have some idea how to get going as we continue to work on these APIs. ## Test Plan I generated the docs site locally and verified things render properly. I also ran each code example to ensure it works as expected. And, I asked my AI code assistant to do a quick spell-check and review of the docs and it didn't flag any obvious errors. --------- Signed-off-by: Ben Browning <bbrownin@redhat.com> Co-authored-by: Francisco Arceo <farceo@redhat.com>
This commit is contained in:
parent
ed69c1b3cc
commit
e9d9f01b8b
2 changed files with 194 additions and 0 deletions
|
@ -103,6 +103,7 @@ getting_started/index
|
||||||
getting_started/detailed_tutorial
|
getting_started/detailed_tutorial
|
||||||
introduction/index
|
introduction/index
|
||||||
concepts/index
|
concepts/index
|
||||||
|
openai/index
|
||||||
providers/index
|
providers/index
|
||||||
distributions/index
|
distributions/index
|
||||||
building_applications/index
|
building_applications/index
|
||||||
|
|
193
docs/source/openai/index.md
Normal file
193
docs/source/openai/index.md
Normal file
|
@ -0,0 +1,193 @@
|
||||||
|
# OpenAI API Compatibility
|
||||||
|
|
||||||
|
## Server path
|
||||||
|
|
||||||
|
Llama Stack exposes an OpenAI-compatible API endpoint at `/v1/openai/v1`. So, for a Llama Stack server running locally on port `8321`, the full url to the OpenAI-compatible API endpoint is `http://localhost:8321/v1/openai/v1`.
|
||||||
|
|
||||||
|
## Clients
|
||||||
|
|
||||||
|
You should be able to use any client that speaks OpenAI APIs with Llama Stack. We regularly test with the official Llama Stack clients as well as OpenAI's official Python client.
|
||||||
|
|
||||||
|
### Llama Stack Client
|
||||||
|
|
||||||
|
When using the Llama Stack client, set the `base_url` to the root of your Llama Stack server. It will automatically route OpenAI-compatible requests to the right server endpoint for you.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from llama_stack_client import LlamaStackClient
|
||||||
|
|
||||||
|
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||||
|
```
|
||||||
|
|
||||||
|
### OpenAI Client
|
||||||
|
|
||||||
|
When using an OpenAI client, set the `base_url` to the `/v1/openai/v1` path on your Llama Stack server.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none")
|
||||||
|
```
|
||||||
|
|
||||||
|
Regardless of the client you choose, the following code examples should all work the same.
|
||||||
|
|
||||||
|
## APIs implemented
|
||||||
|
|
||||||
|
### Models
|
||||||
|
|
||||||
|
Many of the APIs require you to pass in a model parameter. To see the list of models available in your Llama Stack server:
|
||||||
|
|
||||||
|
```python
|
||||||
|
models = client.models.list()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Responses
|
||||||
|
|
||||||
|
:::{note}
|
||||||
|
The Responses API implementation is still in active development. While it is quite usable, there are still unimplemented parts of the API. We'd love feedback on any use-cases you try that do not work to help prioritize the pieces left to implement. Please open issues in the [meta-llama/llama-stack](https://github.com/meta-llama/llama-stack) GitHub repository with details of anything that does not work.
|
||||||
|
:::
|
||||||
|
|
||||||
|
#### Simple inference
|
||||||
|
|
||||||
|
Request:
|
||||||
|
|
||||||
|
```
|
||||||
|
response = client.responses.create(
|
||||||
|
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||||
|
input="Write a haiku about coding."
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.output_text)
|
||||||
|
```
|
||||||
|
Example output:
|
||||||
|
|
||||||
|
```text
|
||||||
|
Pixels dancing slow
|
||||||
|
Syntax whispers secrets sweet
|
||||||
|
Code's gentle silence
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Structured Output
|
||||||
|
|
||||||
|
Request:
|
||||||
|
|
||||||
|
```python
|
||||||
|
response = client.responses.create(
|
||||||
|
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||||
|
input=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "Extract the participants from the event information.",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Alice and Bob are going to a science fair on Friday.",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
text={
|
||||||
|
"format": {
|
||||||
|
"type": "json_schema",
|
||||||
|
"name": "participants",
|
||||||
|
"schema": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"participants": {"type": "array", "items": {"type": "string"}}
|
||||||
|
},
|
||||||
|
"required": ["participants"],
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
print(response.output_text)
|
||||||
|
```
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
|
||||||
|
```text
|
||||||
|
{ "participants": ["Alice", "Bob"] }
|
||||||
|
```
|
||||||
|
|
||||||
|
### Chat Completions
|
||||||
|
|
||||||
|
#### Simple inference
|
||||||
|
|
||||||
|
Request:
|
||||||
|
|
||||||
|
```python
|
||||||
|
chat_completion = client.chat.completions.create(
|
||||||
|
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||||
|
messages=[{"role": "user", "content": "Write a haiku about coding."}],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(chat_completion.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
|
||||||
|
```text
|
||||||
|
Lines of code unfold
|
||||||
|
Logic flows like a river
|
||||||
|
Code's gentle beauty
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Structured Output
|
||||||
|
|
||||||
|
Request:
|
||||||
|
|
||||||
|
```python
|
||||||
|
chat_completion = client.chat.completions.create(
|
||||||
|
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "Extract the participants from the event information.",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Alice and Bob are going to a science fair on Friday.",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
response_format={
|
||||||
|
"type": "json_schema",
|
||||||
|
"json_schema": {
|
||||||
|
"name": "participants",
|
||||||
|
"schema": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"participants": {"type": "array", "items": {"type": "string"}}
|
||||||
|
},
|
||||||
|
"required": ["participants"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
print(chat_completion.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
|
||||||
|
```text
|
||||||
|
{ "participants": ["Alice", "Bob"] }
|
||||||
|
```
|
||||||
|
|
||||||
|
### Completions
|
||||||
|
|
||||||
|
#### Simple inference
|
||||||
|
|
||||||
|
Request:
|
||||||
|
|
||||||
|
```python
|
||||||
|
completion = client.completions.create(
|
||||||
|
model="meta-llama/Llama-3.2-3B-Instruct", prompt="Write a haiku about coding."
|
||||||
|
)
|
||||||
|
|
||||||
|
print(completion.choices[0].text)
|
||||||
|
```
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
|
||||||
|
```text
|
||||||
|
Lines of code unfurl
|
||||||
|
Logic whispers in the dark
|
||||||
|
Art in hidden form
|
||||||
|
```
|
Loading…
Add table
Add a link
Reference in a new issue