feat: Implement hybrid search in SQLite-vec

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-05-29 14:32:54 -07:00
parent 941f505eb0
commit eab85a7121
13 changed files with 335 additions and 10 deletions

View file

@ -66,6 +66,39 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
2. Configure your Llama Stack project to use SQLite-Vec.
3. Start storing and querying vectors.
The SQLite-vec provider supports three search modes:
1. **Vector Search** (`mode="vector"`): Performs pure vector similarity search using the embeddings.
2. **Keyword Search** (`mode="keyword"`): Performs full-text search using SQLite's FTS5.
3. **Hybrid Search** (`mode="hybrid"`): Combines both vector and keyword search for better results. First performs keyword search to get candidate matches, then applies vector similarity search on those candidates.
Example with hybrid search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
)
```
Example with explicit vector search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
)
```
Example with keyword search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
)
```
## Supported Search Modes
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.