feat: Implement hybrid search in SQLite-vec

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-05-29 14:32:54 -07:00
parent 941f505eb0
commit eab85a7121
13 changed files with 335 additions and 10 deletions

View file

@ -84,6 +84,23 @@ async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sa
assert len(response_no_results.chunks) == 0, f"Expected 0 results, but got {len(response_no_results.chunks)}"
@pytest.mark.asyncio
async def test_query_chunks_hybrid(sqlite_vec_index, sample_chunks, sample_embeddings):
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Create a query embedding that's similar to the first chunk
query_embedding = sample_embeddings[0]
query_string = "Sentence 5"
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=3, score_threshold=0.0
)
assert len(response.chunks) == 3, f"Expected 3 results, got {len(response.chunks)}"
# Verify scores are in descending order (higher is better)
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
@pytest.mark.asyncio
async def test_query_chunks_full_text_search_k_greater_than_results(sqlite_vec_index, sample_chunks, sample_embeddings):
# Re-initialize with a clean index
@ -141,3 +158,144 @@ def test_generate_chunk_id():
"bc744db3-1b25-0a9c-cdff-b6ba3df73c36",
"f68df25d-d9aa-ab4d-5684-64a233add20d",
]
@pytest.mark.asyncio
async def test_query_chunks_hybrid_no_keyword_matches(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test hybrid search when keyword search returns no matches - should still return vector results."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Use a non-existent keyword but a valid vector query
query_embedding = sample_embeddings[0]
query_string = "Sentence 499"
# First verify keyword search returns no results
keyword_response = await sqlite_vec_index.query_keyword(query_string, k=5, score_threshold=0.0)
assert len(keyword_response.chunks) == 0, "Keyword search should return no results"
# Get hybrid results
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=3, score_threshold=0.0
)
# Should still get results from vector search
assert len(response.chunks) > 0, "Should get results from vector search even with no keyword matches"
# Verify scores are in descending order
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
@pytest.mark.asyncio
async def test_query_chunks_hybrid_score_threshold(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test hybrid search with a high score threshold."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Use a very high score threshold that no results will meet
query_embedding = sample_embeddings[0]
query_string = "Sentence 5"
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding,
query_string=query_string,
k=3,
score_threshold=1000.0, # Very high threshold
)
# Should return no results due to high threshold
assert len(response.chunks) == 0
@pytest.mark.asyncio
async def test_query_chunks_hybrid_different_embedding(
sqlite_vec_index, sample_chunks, sample_embeddings, embedding_dimension
):
"""Test hybrid search with a different embedding than the stored ones."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Create a random embedding that's different from stored ones
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
query_string = "Sentence 5"
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=3, score_threshold=0.0
)
# Should still get results if keyword matches exist
assert len(response.chunks) > 0
# Verify scores are in descending order
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
@pytest.mark.asyncio
async def test_query_chunks_hybrid_rrf_ranking(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test that RRF properly combines rankings when documents appear in both search methods."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Create a query embedding that's similar to the first chunk
query_embedding = sample_embeddings[0]
# Use a keyword that appears in multiple documents
query_string = "Sentence 5"
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=5, score_threshold=0.0
)
# Verify we get results from both search methods
assert len(response.chunks) > 0
# Verify scores are in descending order (RRF should maintain this)
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
@pytest.mark.asyncio
async def test_query_chunks_hybrid_score_selection(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test that we correctly rank documents that appear in both search methods."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Create a query embedding that's similar to the first chunk
query_embedding = sample_embeddings[0]
# Use a keyword that appears in the first document
query_string = "Sentence 0 from document 0"
# First get individual results to verify ranks
vector_response = await sqlite_vec_index.query_vector(query_embedding, k=5, score_threshold=0.0)
keyword_response = await sqlite_vec_index.query_keyword(query_string, k=5, score_threshold=0.0)
# Verify document-0 appears in both results
assert any(chunk.metadata["document_id"] == "document-0" for chunk in vector_response.chunks), (
"document-0 not found in vector search results"
)
assert any(chunk.metadata["document_id"] == "document-0" for chunk in keyword_response.chunks), (
"document-0 not found in keyword search results"
)
# Now get hybrid results
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=1, score_threshold=0.0
)
# Verify document-0 is ranked first in hybrid results
assert len(response.chunks) == 1
assert response.chunks[0].metadata["document_id"] == "document-0", "document-0 not ranked first in hybrid results"
@pytest.mark.asyncio
async def test_query_chunks_hybrid_mixed_results(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test hybrid search with documents that appear in only one search method."""
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Create a query embedding that's similar to the first chunk
query_embedding = sample_embeddings[0]
# Use a keyword that appears in a different document
query_string = "Sentence 9 from document 2"
response = await sqlite_vec_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=3, score_threshold=0.0
)
# Should get results from both search methods
assert len(response.chunks) > 0
# Verify scores are in descending order
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
# Verify we get results from both the vector-similar document and keyword-matched document
doc_ids = {chunk.metadata["document_id"] for chunk in response.chunks}
assert "document-0" in doc_ids # From vector search
assert "document-2" in doc_ids # From keyword search