refactor schema check

This commit is contained in:
Xi Yan 2024-12-30 17:53:10 -08:00
parent 3367c52e31
commit eb92322c3c
6 changed files with 115 additions and 104 deletions

View file

@ -0,0 +1,87 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List
from llama_stack.apis.common.type_system import (
ChatCompletionInputType,
CompletionInputType,
StringType,
)
from llama_stack.distribution.datatypes import Api
class ColumnName(Enum):
input_query = "input_query"
expected_answer = "expected_answer"
chat_completion_input = "chat_completion_input"
completion_input = "completion_input"
generated_answer = "generated_answer"
context = "context"
VALID_SCHEMAS_FOR_SCORING = [
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.generated_answer.value: StringType(),
},
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.generated_answer.value: StringType(),
ColumnName.context.value: StringType(),
},
]
VALID_SCHEMAS_FOR_EVAL = [
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
},
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.completion_input.value: CompletionInputType(),
},
]
def get_valid_schemas(api_str: str):
if api_str == Api.scoring.value:
return VALID_SCHEMAS_FOR_SCORING
elif api_str == Api.eval.value:
return VALID_SCHEMAS_FOR_EVAL
else:
raise ValueError(f"Invalid API string: {api_str}")
class DataSchemaValidatorMixin:
def validate_dataset_schema(
self,
dataset_schema: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
if dataset_schema not in expected_schemas:
raise ValueError(
f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}"
)
def validate_row_schema(
self,
input_row: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
for schema in expected_schemas:
if all(key in input_row for key in schema):
return
raise ValueError(
f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}"
)

View file

@ -1,93 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List
from llama_stack.apis.common.type_system import (
ChatCompletionInputType,
CompletionInputType,
StringType,
)
class ColumnName(Enum):
input_query = "input_query"
expected_answer = "expected_answer"
chat_completion_input = "chat_completion_input"
completion_input = "completion_input"
generated_answer = "generated_answer"
context = "context"
class DataSchemaValidatorMixin:
def validate_dataset_schema_for_scoring(self, dataset_schema: Dict[str, Any]):
self.validate_dataset_schema(
dataset_schema, self.get_expected_schema_for_scoring()
)
def validate_dataset_schema_for_eval(self, dataset_schema: Dict[str, Any]):
self.validate_dataset_schema(
dataset_schema, self.get_expected_schema_for_eval()
)
def validate_row_schema_for_scoring(self, row_schema: Dict[str, Any]):
self.validate_row_schema(row_schema, self.get_expected_schema_for_scoring())
def validate_row_schema_for_eval(self, row_schema: Dict[str, Any]):
self.validate_row_schema(row_schema, self.get_expected_schema_for_eval())
def get_expected_schema_for_scoring(self):
return [
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.generated_answer.value: StringType(),
},
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.generated_answer.value: StringType(),
ColumnName.context.value: StringType(),
},
]
def get_expected_schema_for_eval(self):
return [
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
},
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.completion_input.value: CompletionInputType(),
},
]
def validate_dataset_schema(
self,
dataset_schema: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
if dataset_schema not in expected_schemas:
raise ValueError(
f"Dataset does not have a correct input schema in {expected_schemas}"
)
def validate_row_schema(
self,
input_row: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
for schema in expected_schemas:
if all(key in input_row for key in schema):
return
raise ValueError(
f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}"
)