Add CLI reference docs (#14)

* Add CLI reference doc

* touchups

* add helptext for download
This commit is contained in:
Dalton Flanagan 2024-07-25 16:56:29 -04:00 committed by GitHub
parent b8aa99b034
commit ec433448f2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 174 additions and 38 deletions

View file

@ -1,11 +1,12 @@
# llama-toolchain
This repo contains the API specifications for various components of the Llama Stack as well implementations for some of those APIs like model inference.
The Stack consists of toolchain-apis and agentic-apis. This repo contains the toolchain-apis
The Llama Stack consists of toolchain-apis and agentic-apis. This repo contains the toolchain-apis.
## Installation
You can install this repository as a [package](https://pypi.org/project/llama-toolchain/) by just doing `pip install llama-toolchain`
You can install this repository as a [package](https://pypi.org/project/llama-toolchain/) with `pip install llama-toolchain`
If you want to install from source:
@ -21,44 +22,13 @@ cd llama-toolchain
pip install -e .
```
## Test with cli
## The Llama CLI
We have built a llama cli to make it easy to configure / run parts of the toolchain
```
llama --help
The `llama` CLI makes it easy to configure and run the Llama toolchain. Read the [CLI reference](docs/cli_reference.md) for details.
usage: llama [-h] {download,inference,model,agentic_system} ...
## Appendix: Running FP8
Welcome to the LLama cli
options:
-h, --help show this help message and exit
subcommands:
{download,inference,model,agentic_system}
```
There are several subcommands to help get you started
## Start inference server that can run the llama models
```bash
llama inference configure
llama inference start
```
## Test client
```bash
python -m llama_toolchain.inference.client localhost 5000
Initializing client for http://localhost:5000
User>hello world, help me out here
Assistant> Hello! I'd be delighted to help you out. What's on your mind? Do you have a question, a problem, or just need someone to chat with? I'm all ears!
```
## Running FP8
You need `fbgemm-gpu` package which requires torch >= 2.4.0 (currently only in nightly, but releasing shortly...).
If you want to run FP8, you need the `fbgemm-gpu` package which requires `torch >= 2.4.0` (currently only in nightly, but releasing shortly...)
```bash
ENV=fp8_env

166
docs/cli_reference.md Normal file
View file

@ -0,0 +1,166 @@
# Llama CLI Reference
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package.
```
$ llama --help
Welcome to the Llama CLI
Usage: llama [-h] {download,inference,model} ...
Options:
-h, --help Show this help message and exit
Subcommands:
{download,inference,model}
```
## Step 1. Get the models
First, you need models locally. You can get the models from [HuggingFace](https://huggingface.co/meta-llama) or [directly from Meta](https://llama.meta.com/llama-downloads/). The download command streamlines the process.
```
$ llama download --help
usage: llama download [-h] [--hf-token HF_TOKEN] [--ignore-patterns IGNORE_PATTERNS] repo_id
Download a model from the Hugging Face Hub
positional arguments:
repo_id Name of the repository on Hugging Face Hub eg. llhf/Meta-Llama-3.1-70B-Instruct
options:
-h, --help show this help message and exit
--hf-token HF_TOKEN Hugging Face API token. Needed for gated models like Llama2. Will also try to read environment variable `HF_TOKEN` as default.
--ignore-patterns IGNORE_PATTERNS
If provided, files matching any of the patterns are not downloaded. Defaults to ignoring safetensors files to avoid downloading duplicate weights.
# Here are some examples on how to use this command:
llama download --repo-id meta-llama/Llama-2-7b-hf --hf-token <HF_TOKEN>
llama download --repo-id meta-llama/Llama-2-7b-hf --output-dir /data/my_custom_dir --hf-token <HF_TOKEN>
HF_TOKEN=<HF_TOKEN> llama download --repo-id meta-llama/Llama-2-7b-hf
The output directory will be used to load models and tokenizers for inference.
```
1. Create and get a Hugging Face access token [here](https://huggingface.co/settings/tokens)
2. Set the `HF_TOKEN` environment variable
```
export HF_TOKEN=YOUR_TOKEN_HERE
llama download meta-llama/Meta-Llama-3.1-70B-Instruct
```
## Step 2: Understand the models
The `llama model` command helps you explore the models interface.
```
$ llama model --help
usage: llama model [-h] {template} ...
Describe llama model interfaces
options:
-h, --help show this help message and exit
model_subcommands:
{template}
Example: llama model <subcommand> <options>
```
You can run `llama model template` see all of the templates and their tokens:
```
$ llama model template
system-message-builtin-and-custom-tools
system-message-builtin-tools-only
system-message-custom-tools-only
system-message-default
assistant-message-builtin-tool-call
assistant-message-custom-tool-call
assistant-message-default
tool-message-failure
tool-message-success
user-message-default
```
And fetch an example by passing it to `--template`:
```
llama model template --template tool-message-success
llama model template --template tool-message-success
<|start_header_id|>ipython<|end_header_id|>
completed
[stdout]{"results":["something something"]}[/stdout]<|eot_id|>
```
## Step 3. Start the inference server
Once you have a model, the magic begins with inference. The `llama inference` command can help you configure and launch the Llama Stack inference server.
```
$ llama inference --help
usage: llama inference [-h] {start,configure} ...
Run inference on a llama model
options:
-h, --help show this help message and exit
inference_subcommands:
{start,configure}
Example: llama inference start <options>
```
Run `llama inference configure` to setup your configuration at `~/.llama/configs/inference.yaml`. Youll set up variables like:
* the directory where you stored the models you downloaded from step 1
* the model parallel size (1 for 8B models, 8 for 70B/405B)
Once youve configured the inference server, run `llama inference start`. The model will load into GPU and youll be able to send requests once you see the server ready.
If you want to use a different model, re-run `llama inference configure` to update the model path and llama inference start to start again.
Run `llama inference --help` for more information.
## Step 4. Start the agentic system
The `llama agentic_system` command helps you configure and launch agentic systems. The `llama agentic_system configure` command sets up the configuration file the agentic code expects, and the `llama agentic_system start_app` command streamlines launching.
For example, lets run the included chat app:
```
llama agentic_system configure
llama agentic_system start_app chat
```
For more information run `llama agentic_system --help`.

View file

@ -17,7 +17,7 @@ class LlamaCLIParser:
def __init__(self):
self.parser = argparse.ArgumentParser(
prog="llama",
description="Welcome to the LLama cli",
description="Welcome to the Llama CLI",
add_help=True,
)