mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-16 09:58:10 +00:00
migrate model to Resource and new registration signature (#410)
* resource oriented object design for models * add back llama_model field * working tests * register singature fix * address feedback --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
This commit is contained in:
parent
bd0622ef10
commit
ec644d3418
17 changed files with 99 additions and 90 deletions
|
@ -14,7 +14,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.datasets import DatasetDef
|
||||
from llama_stack.apis.eval_tasks import EvalTaskDef
|
||||
from llama_stack.apis.memory_banks import MemoryBankDef
|
||||
from llama_stack.apis.models import ModelDef
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.scoring_functions import ScoringFnDef
|
||||
from llama_stack.apis.shields import Shield
|
||||
|
||||
|
@ -43,9 +43,7 @@ class Api(Enum):
|
|||
|
||||
|
||||
class ModelsProtocolPrivate(Protocol):
|
||||
async def list_models(self) -> List[ModelDef]: ...
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None: ...
|
||||
async def register_model(self, model: Model) -> None: ...
|
||||
|
||||
|
||||
class ShieldsProtocolPrivate(Protocol):
|
||||
|
|
|
@ -12,7 +12,7 @@ from llama_models.sku_list import resolve_model
|
|||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_media_to_url,
|
||||
|
@ -45,16 +45,11 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
self.generator = Llama.build(self.config)
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
raise ValueError("Dynamic model registration is not supported")
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
return [
|
||||
ModelDef(
|
||||
identifier=self.model.descriptor(),
|
||||
llama_model=self.model.descriptor(),
|
||||
async def register_model(self, model: Model) -> None:
|
||||
if model.identifier != self.model.descriptor():
|
||||
raise ValueError(
|
||||
f"Model mismatch: {model.identifier} != {self.model.descriptor()}"
|
||||
)
|
||||
]
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self.config.create_distributed_process_group:
|
||||
|
|
|
@ -20,7 +20,7 @@ from vllm.sampling_params import SamplingParams as VLLMSamplingParams
|
|||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
|
@ -83,19 +83,11 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
if self.engine:
|
||||
self.engine.shutdown_background_loop()
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
async def register_model(self, model: Model) -> None:
|
||||
raise ValueError(
|
||||
"You cannot dynamically add a model to a running vllm instance"
|
||||
)
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
return [
|
||||
ModelDef(
|
||||
identifier=self.config.model,
|
||||
llama_model=self.config.model,
|
||||
)
|
||||
]
|
||||
|
||||
def _sampling_params(self, sampling_params: SamplingParams) -> VLLMSamplingParams:
|
||||
if sampling_params is None:
|
||||
return VLLMSamplingParams(max_tokens=self.config.max_tokens)
|
||||
|
|
|
@ -15,7 +15,7 @@ from llama_models.llama3.api.tokenizer import Tokenizer
|
|||
from ollama import AsyncClient
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
|
@ -65,10 +65,11 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
raise ValueError("Dynamic model registration is not supported")
|
||||
async def register_model(self, model: Model) -> None:
|
||||
if model.identifier not in OLLAMA_SUPPORTED_MODELS:
|
||||
raise ValueError(f"Model {model.identifier} is not supported by Ollama")
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
async def list_models(self) -> List[Model]:
|
||||
ollama_to_llama = {v: k for k, v in OLLAMA_SUPPORTED_MODELS.items()}
|
||||
|
||||
ret = []
|
||||
|
@ -80,9 +81,8 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
llama_model = ollama_to_llama[r["model"]]
|
||||
ret.append(
|
||||
ModelDef(
|
||||
Model(
|
||||
identifier=llama_model,
|
||||
llama_model=llama_model,
|
||||
metadata={
|
||||
"ollama_model": r["model"],
|
||||
},
|
||||
|
|
|
@ -14,7 +14,7 @@ class SampleInferenceImpl(Inference):
|
|||
def __init__(self, config: SampleConfig):
|
||||
self.config = config
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
async def register_model(self, model: Model) -> None:
|
||||
# these are the model names the Llama Stack will use to route requests to this provider
|
||||
# perform validation here if necessary
|
||||
pass
|
||||
|
|
|
@ -16,7 +16,7 @@ from llama_models.sku_list import all_registered_models
|
|||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.models import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
|
@ -50,14 +50,14 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
if model.huggingface_repo
|
||||
}
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
raise ValueError("Model registration is not supported for HuggingFace models")
|
||||
async def register_model(self, model: Model) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
async def list_models(self) -> List[Model]:
|
||||
repo = self.model_id
|
||||
identifier = self.huggingface_repo_to_llama_model_id[repo]
|
||||
return [
|
||||
ModelDef(
|
||||
Model(
|
||||
identifier=identifier,
|
||||
llama_model=identifier,
|
||||
metadata={
|
||||
|
|
|
@ -13,7 +13,7 @@ from llama_models.sku_list import all_registered_models, resolve_model
|
|||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
|
@ -44,13 +44,13 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def initialize(self) -> None:
|
||||
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
async def register_model(self, model: Model) -> None:
|
||||
raise ValueError("Model registration is not supported for vLLM models")
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
async def list_models(self) -> List[Model]:
|
||||
models = []
|
||||
for model in self.client.models.list():
|
||||
repo = model.id
|
||||
|
@ -60,7 +60,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
identifier = self.huggingface_repo_to_llama_model_id[repo]
|
||||
models.append(
|
||||
ModelDef(
|
||||
Model(
|
||||
identifier=identifier,
|
||||
llama_model=identifier,
|
||||
)
|
||||
|
|
|
@ -153,7 +153,7 @@ INFERENCE_FIXTURES = [
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def inference_stack(request):
|
||||
async def inference_stack(request, inference_model):
|
||||
fixture_name = request.param
|
||||
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
|
||||
impls = await resolve_impls_for_test_v2(
|
||||
|
@ -162,4 +162,9 @@ async def inference_stack(request):
|
|||
inference_fixture.provider_data,
|
||||
)
|
||||
|
||||
await impls[Api.models].register_model(
|
||||
model_id=inference_model,
|
||||
provider_model_id=inference_fixture.providers[0].provider_id,
|
||||
)
|
||||
|
||||
return (impls[Api.inference], impls[Api.models])
|
||||
|
|
|
@ -69,7 +69,7 @@ class TestInference:
|
|||
response = await models_impl.list_models()
|
||||
assert isinstance(response, list)
|
||||
assert len(response) >= 1
|
||||
assert all(isinstance(model, ModelDefWithProvider) for model in response)
|
||||
assert all(isinstance(model, Model) for model in response)
|
||||
|
||||
model_def = None
|
||||
for model in response:
|
||||
|
|
|
@ -4,11 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict, List
|
||||
from typing import Dict
|
||||
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
|
||||
class ModelRegistryHelper(ModelsProtocolPrivate):
|
||||
|
@ -28,14 +28,8 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
|
||||
return self.stack_to_provider_models_map[identifier]
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
async def register_model(self, model: Model) -> None:
|
||||
if model.identifier not in self.stack_to_provider_models_map:
|
||||
raise ValueError(
|
||||
f"Unsupported model {model.identifier}. Supported models: {self.stack_to_provider_models_map.keys()}"
|
||||
)
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
models = []
|
||||
for llama_model, provider_model in self.stack_to_provider_models_map.items():
|
||||
models.append(ModelDef(identifier=llama_model, llama_model=llama_model))
|
||||
return models
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue