mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
dataset accept file uploads
This commit is contained in:
parent
3c29108b6e
commit
ec6c63ba57
4 changed files with 58 additions and 9 deletions
|
@ -12,9 +12,28 @@ import httpx
|
||||||
from termcolor import cprint
|
from termcolor import cprint
|
||||||
|
|
||||||
from .evals import * # noqa: F403
|
from .evals import * # noqa: F403
|
||||||
|
import base64
|
||||||
|
import mimetypes
|
||||||
|
import os
|
||||||
|
|
||||||
from ..datasets.client import DatasetsClient
|
from ..datasets.client import DatasetsClient
|
||||||
|
|
||||||
|
|
||||||
|
def data_url_from_file(file_path: str) -> str:
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
with open(file_path, "rb") as file:
|
||||||
|
file_content = file.read()
|
||||||
|
|
||||||
|
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||||
|
mime_type, _ = mimetypes.guess_type(file_path)
|
||||||
|
|
||||||
|
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||||
|
|
||||||
|
return data_url
|
||||||
|
|
||||||
|
|
||||||
class EvaluationClient(Evals):
|
class EvaluationClient(Evals):
|
||||||
def __init__(self, base_url: str):
|
def __init__(self, base_url: str):
|
||||||
self.base_url = base_url
|
self.base_url = base_url
|
||||||
|
@ -70,9 +89,8 @@ class EvaluationClient(Evals):
|
||||||
return EvaluateResponse(**response.json())
|
return EvaluateResponse(**response.json())
|
||||||
|
|
||||||
|
|
||||||
async def run_main(host: str, port: int):
|
async def run_main(host: str, port: int, eval_dataset_path: str = ""):
|
||||||
client = EvaluationClient(f"http://{host}:{port}")
|
client = EvaluationClient(f"http://{host}:{port}")
|
||||||
|
|
||||||
dataset_client = DatasetsClient(f"http://{host}:{port}")
|
dataset_client = DatasetsClient(f"http://{host}:{port}")
|
||||||
|
|
||||||
# Full Eval Task
|
# Full Eval Task
|
||||||
|
@ -114,10 +132,19 @@ async def run_main(host: str, port: int):
|
||||||
)
|
)
|
||||||
cprint(response, "cyan")
|
cprint(response, "cyan")
|
||||||
|
|
||||||
|
response = await dataset_client.create_dataset(
|
||||||
|
dataset_def=CustomDatasetDef(
|
||||||
|
identifier="rag-evals",
|
||||||
|
url=data_url_from_file(eval_dataset_path),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
cprint(response, "cyan")
|
||||||
|
|
||||||
# 2. run evals on the registered dataset
|
# 2. run evals on the registered dataset
|
||||||
response = await client.run_scorer(
|
response = await client.run_scorer(
|
||||||
dataset_config=EvaluateDatasetConfig(
|
dataset_config=EvaluateDatasetConfig(
|
||||||
dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
dataset_identifier="rag-evals",
|
||||||
|
# dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||||
row_limit=10,
|
row_limit=10,
|
||||||
),
|
),
|
||||||
eval_scoring_config=EvaluateScoringConfig(
|
eval_scoring_config=EvaluateScoringConfig(
|
||||||
|
@ -141,8 +168,8 @@ async def run_main(host: str, port: int):
|
||||||
# )
|
# )
|
||||||
|
|
||||||
|
|
||||||
def main(host: str, port: int):
|
def main(host: str, port: int, eval_dataset_path: str = ""):
|
||||||
asyncio.run(run_main(host, port))
|
asyncio.run(run_main(host, port, eval_dataset_path))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
|
@ -3,10 +3,13 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
import io
|
||||||
|
|
||||||
import pandas
|
import pandas
|
||||||
from datasets import Dataset, load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
|
|
||||||
from llama_stack.apis.datasets import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
|
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||||
|
|
||||||
|
|
||||||
class CustomDataset(BaseDataset[DictSample]):
|
class CustomDataset(BaseDataset[DictSample]):
|
||||||
|
@ -37,11 +40,31 @@ class CustomDataset(BaseDataset[DictSample]):
|
||||||
if self.dataset:
|
if self.dataset:
|
||||||
return
|
return
|
||||||
|
|
||||||
# TODO: better support w/ data url
|
# TODO: more robust support w/ data url
|
||||||
if self.config.url.endswith(".csv"):
|
if self.config.url.endswith(".csv"):
|
||||||
df = pandas.read_csv(self.config.url)
|
df = pandas.read_csv(self.config.url)
|
||||||
elif self.config.url.endswith(".xlsx"):
|
elif self.config.url.endswith(".xlsx"):
|
||||||
df = pandas.read_excel(self.config.url)
|
df = pandas.read_excel(self.config.url)
|
||||||
|
elif self.config.url.startswith("data:"):
|
||||||
|
parts = parse_data_url(self.config.url)
|
||||||
|
data = parts["data"]
|
||||||
|
if parts["is_base64"]:
|
||||||
|
data = base64.b64decode(data)
|
||||||
|
else:
|
||||||
|
data = unquote(data)
|
||||||
|
encoding = parts["encoding"] or "utf-8"
|
||||||
|
data = data.encode(encoding)
|
||||||
|
|
||||||
|
mime_type = parts["mimetype"]
|
||||||
|
mime_category = mime_type.split("/")[0]
|
||||||
|
data_bytes = io.BytesIO(data)
|
||||||
|
|
||||||
|
if mime_category == "text":
|
||||||
|
df = pandas.read_csv(data_bytes)
|
||||||
|
else:
|
||||||
|
df = pandas.read_excel(data_bytes)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported file type: {self.config.url}")
|
||||||
|
|
||||||
if n_samples is not None:
|
if n_samples is not None:
|
||||||
df = df.sample(n=n_samples)
|
df = df.sample(n=n_samples)
|
||||||
|
|
|
@ -11,7 +11,6 @@ from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers impor
|
||||||
|
|
||||||
from llama_stack.apis.evals import * # noqa: F403
|
from llama_stack.apis.evals import * # noqa: F403
|
||||||
from llama_stack.apis.inference import * # noqa: F403
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
from termcolor import cprint
|
|
||||||
|
|
||||||
|
|
||||||
class RunScoringTask(BaseTask):
|
class RunScoringTask(BaseTask):
|
||||||
|
@ -62,9 +61,8 @@ class RunScoringTask(BaseTask):
|
||||||
dataset.load(n_samples=dataset_config.row_limit)
|
dataset.load(n_samples=dataset_config.row_limit)
|
||||||
print(f"Running on {len(dataset)} samples")
|
print(f"Running on {len(dataset)} samples")
|
||||||
|
|
||||||
# transform dataset into
|
# transform dataset into List[ScorerInputSample]
|
||||||
postprocessed = self.transform_score_input_sample(dataset)
|
postprocessed = self.transform_score_input_sample(dataset)
|
||||||
cprint(postprocessed, "blue")
|
|
||||||
|
|
||||||
# F3 - scorer
|
# F3 - scorer
|
||||||
scorer_config_list = eval_scoring_config.scorer_config_list
|
scorer_config_list = eval_scoring_config.scorer_config_list
|
||||||
|
|
|
@ -22,6 +22,7 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
"datasets",
|
"datasets",
|
||||||
"numpy",
|
"numpy",
|
||||||
"autoevals",
|
"autoevals",
|
||||||
|
"openpyxl",
|
||||||
],
|
],
|
||||||
module="llama_stack.providers.impls.meta_reference.evals",
|
module="llama_stack.providers.impls.meta_reference.evals",
|
||||||
config_class="llama_stack.providers.impls.meta_reference.evals.MetaReferenceEvalsImplConfig",
|
config_class="llama_stack.providers.impls.meta_reference.evals.MetaReferenceEvalsImplConfig",
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue