mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 06:53:47 +00:00
doc enhancements, converted md into jupyter, reorganize files
This commit is contained in:
parent
0f08f77565
commit
ecad16b904
13 changed files with 450 additions and 113 deletions
|
@ -1,192 +0,0 @@
|
|||
|
||||
# Llama Stack Text Generation Guide
|
||||
|
||||
This document provides instructions on how to use Llama Stack's `chat_completion` function for generating text using the `Llama3.2-11B-Vision-Instruct` model. Before you begin, please ensure Llama Stack is installed and set up by following the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/).
|
||||
|
||||
### Table of Contents
|
||||
1. [Quickstart](#quickstart)
|
||||
2. [Building Effective Prompts](#building-effective-prompts)
|
||||
3. [Conversation Loop](#conversation-loop)
|
||||
4. [Conversation History](#conversation-history)
|
||||
5. [Streaming Responses](#streaming-responses)
|
||||
|
||||
|
||||
## Quickstart
|
||||
|
||||
This section walks through each step to set up and make a simple text generation request.
|
||||
|
||||
### 1. Set Up the Client
|
||||
|
||||
Begin by importing the necessary components from Llama Stack’s client library:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import SystemMessage, UserMessage
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
```
|
||||
|
||||
### 2. Create a Chat Completion Request
|
||||
|
||||
Use the `chat_completion` function to define the conversation context. Each message you include should have a specific role and content:
|
||||
|
||||
```python
|
||||
response = client.inference.chat_completion(
|
||||
messages=[
|
||||
SystemMessage(content="You are a friendly assistant.", role="system"),
|
||||
UserMessage(content="Write a two-sentence poem about llama.", role="user")
|
||||
],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
)
|
||||
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Building Effective Prompts
|
||||
|
||||
Effective prompt creation (often called "prompt engineering") is essential for quality responses. Here are best practices for structuring your prompts to get the most out of the Llama Stack model:
|
||||
|
||||
1. **System Messages**: Use `SystemMessage` to set the model's behavior. This is similar to providing top-level instructions for tone, format, or specific behavior.
|
||||
- **Example**: `SystemMessage(content="You are a friendly assistant that explains complex topics simply.")`
|
||||
2. **User Messages**: Define the task or question you want to ask the model with a `UserMessage`. The clearer and more direct you are, the better the response.
|
||||
- **Example**: `UserMessage(content="Explain recursion in programming in simple terms.")`
|
||||
|
||||
### Sample Prompt
|
||||
|
||||
Here’s a prompt that defines the model's role and a user question:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import SystemMessage, UserMessage
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=[
|
||||
SystemMessage(content="You are shakespeare.", role="system"),
|
||||
UserMessage(content="Write a two-sentence poem about llama.", role="user")
|
||||
],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
)
|
||||
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Conversation Loop
|
||||
|
||||
To create a continuous conversation loop, where users can input multiple messages in a session, use the following structure. This example runs an asynchronous loop, ending when the user types "exit," "quit," or "bye."
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import UserMessage
|
||||
from termcolor import cprint
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
|
||||
async def chat_loop():
|
||||
while True:
|
||||
user_input = input("User> ")
|
||||
if user_input.lower() in ["exit", "quit", "bye"]:
|
||||
cprint("Ending conversation. Goodbye!", "yellow")
|
||||
break
|
||||
|
||||
message = UserMessage(content=user_input, role="user")
|
||||
response = client.inference.chat_completion(
|
||||
messages=[message],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
)
|
||||
cprint(f"> Response: {response.completion_message.content}", "cyan")
|
||||
|
||||
asyncio.run(chat_loop())
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Conversation History
|
||||
|
||||
Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import UserMessage
|
||||
from termcolor import cprint
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
|
||||
async def chat_loop():
|
||||
conversation_history = []
|
||||
while True:
|
||||
user_input = input("User> ")
|
||||
if user_input.lower() in ["exit", "quit", "bye"]:
|
||||
cprint("Ending conversation. Goodbye!", "yellow")
|
||||
break
|
||||
|
||||
user_message = UserMessage(content=user_input, role="user")
|
||||
conversation_history.append(user_message)
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=conversation_history,
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
)
|
||||
cprint(f"> Response: {response.completion_message.content}", "cyan")
|
||||
|
||||
assistant_message = UserMessage(content=response.completion_message.content, role="user")
|
||||
conversation_history.append(assistant_message)
|
||||
|
||||
asyncio.run(chat_loop())
|
||||
```
|
||||
|
||||
## Streaming Responses
|
||||
|
||||
Llama Stack offers a `stream` parameter in the `chat_completion` function, which allows partial responses to be returned progressively as they are generated. This can enhance user experience by providing immediate feedback without waiting for the entire response to be processed.
|
||||
|
||||
### Example: Streaming Responses
|
||||
|
||||
The following code demonstrates how to use the `stream` parameter to enable response streaming. When `stream=True`, the `chat_completion` function will yield tokens as they are generated. To display these tokens, this example leverages asynchronous streaming with `EventLogger`.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.lib.inference.event_logger import EventLogger
|
||||
from llama_stack_client.types import UserMessage
|
||||
from termcolor import cprint
|
||||
|
||||
async def run_main(stream: bool = True):
|
||||
client = LlamaStackClient(
|
||||
base_url="http://localhost:5000",
|
||||
)
|
||||
|
||||
message = UserMessage(
|
||||
content="hello world, write me a 2 sentence poem about the moon", role="user"
|
||||
)
|
||||
print(f"User>{message.content}", "green")
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=[message],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if not stream:
|
||||
cprint(f"> Response: {response}", "cyan")
|
||||
else:
|
||||
async for log in EventLogger().log(response):
|
||||
log.print()
|
||||
|
||||
models_response = client.models.list()
|
||||
print(models_response)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(run_main())
|
||||
```
|
||||
|
||||
|
||||
---
|
||||
|
||||
With these fundamentals, you should be well on your way to leveraging Llama Stack’s text generation capabilities! For more advanced features, refer to the [Llama Stack Documentation](https://llama-stack.readthedocs.io/en/latest/).
|
|
@ -1,144 +0,0 @@
|
|||
|
||||
# Few-Shot Inference for LLMs
|
||||
|
||||
This guide provides instructions on how to use Llama Stack’s `chat_completion` API with a few-shot learning approach to enhance text generation. Few-shot examples enable the model to recognize patterns by providing labeled prompts, allowing it to complete tasks based on minimal prior examples.
|
||||
|
||||
### Overview
|
||||
|
||||
Few-shot learning provides the model with multiple examples of input-output pairs. This is particularly useful for guiding the model's behavior in specific tasks, helping it understand the desired completion format and content based on a few sample interactions.
|
||||
|
||||
### Implementation
|
||||
|
||||
1. **Initialize the Client**
|
||||
|
||||
Begin by setting up the `LlamaStackClient` to connect to the inference endpoint.
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
```
|
||||
|
||||
2. **Define Few-Shot Examples**
|
||||
|
||||
Construct a series of labeled `UserMessage` and `CompletionMessage` instances to demonstrate the task to the model. Each `UserMessage` represents an input prompt, and each `CompletionMessage` is the desired output. The model uses these examples to infer the appropriate response patterns.
|
||||
|
||||
```python
|
||||
from llama_stack_client.types import CompletionMessage, UserMessage
|
||||
|
||||
few_shot_examples = messages=[
|
||||
UserMessage(content="Have shorter, spear-shaped ears.", role="user"),
|
||||
CompletionMessage(
|
||||
content="That's Alpaca!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Known for their calm nature and used as pack animals in mountainous regions.",
|
||||
role="user",
|
||||
),
|
||||
CompletionMessage(
|
||||
content="That's Llama!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Has a straight, slender neck and is smaller in size compared to its relative.",
|
||||
role="user",
|
||||
),
|
||||
CompletionMessage(
|
||||
content="That's Alpaca!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Generally taller and more robust, commonly seen as guard animals.",
|
||||
role="user",
|
||||
),
|
||||
]
|
||||
```
|
||||
|
||||
### Note
|
||||
- **Few-Shot Examples**: These examples show the model the correct responses for specific prompts.
|
||||
- **CompletionMessage**: This defines the model's expected completion for each prompt.
|
||||
|
||||
3. **Invoke `chat_completion` with Few-Shot Examples**
|
||||
|
||||
Use the few-shot examples as the message input for `chat_completion`. The model will use the examples to generate contextually appropriate responses, allowing it to infer and complete new queries in a similar format.
|
||||
|
||||
```python
|
||||
response = client.inference.chat_completion(
|
||||
messages=few_shot_examples, model="Llama3.2-11B-Vision-Instruct"
|
||||
)
|
||||
```
|
||||
|
||||
4. **Display the Model’s Response**
|
||||
|
||||
The `completion_message` contains the assistant’s generated content based on the few-shot examples provided. Output this content to see the model's response directly in the console.
|
||||
|
||||
```python
|
||||
from termcolor import cprint
|
||||
|
||||
cprint(f"> Response: {response.completion_message.content}", "cyan")
|
||||
```
|
||||
|
||||
Few-shot learning with Llama Stack’s `chat_completion` allows the model to recognize patterns with minimal training data, helping it generate contextually accurate responses based on prior examples. This approach is highly effective for guiding the model in tasks that benefit from clear input-output examples without extensive fine-tuning.
|
||||
|
||||
|
||||
### Complete code
|
||||
Summing it up, here's the code for few-shot implementation with llama-stack:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import CompletionMessage, UserMessage
|
||||
from termcolor import cprint
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=[
|
||||
UserMessage(content="Have shorter, spear-shaped ears.", role="user"),
|
||||
CompletionMessage(
|
||||
content="That's Alpaca!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Known for their calm nature and used as pack animals in mountainous regions.",
|
||||
role="user",
|
||||
),
|
||||
CompletionMessage(
|
||||
content="That's Llama!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Has a straight, slender neck and is smaller in size compared to its relative.",
|
||||
role="user",
|
||||
),
|
||||
CompletionMessage(
|
||||
content="That's Alpaca!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_message",
|
||||
tool_calls=[],
|
||||
),
|
||||
UserMessage(
|
||||
content="Generally taller and more robust, commonly seen as guard animals.",
|
||||
role="user",
|
||||
),
|
||||
],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
)
|
||||
|
||||
cprint(f"> Response: {response.completion_message.content}", "cyan")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
With this fundamental, you should be well on your way to leveraging Llama Stack’s text generation capabilities! For more advanced features, refer to the [Llama Stack Documentation](https://llama-stack.readthedocs.io/en/latest/).
|
||||
|
|
@ -1,140 +0,0 @@
|
|||
|
||||
# Switching between Local and Cloud Model with Llama Stack
|
||||
|
||||
This guide provides a streamlined setup to switch between local and cloud clients for text generation with Llama Stack’s `chat_completion` API. This setup enables automatic fallback to a cloud instance if the local client is unavailable.
|
||||
|
||||
|
||||
### Pre-requisite
|
||||
Before you begin, please ensure Llama Stack is installed and the distribution are set up by following the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/). You will need to run two distribution, a local and a cloud distribution, for this demo to work.
|
||||
|
||||
<!--- [TODO: show how to create two distributions] --->
|
||||
|
||||
### Implementation
|
||||
|
||||
1. **Set Up Local and Cloud Clients**
|
||||
|
||||
Initialize both clients, specifying the `base_url` for you intialized each instance. In this case, we have the local distribution running on `http://localhost:5000` and the cloud distribution running on `http://localhost:5001`.
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
# Configure local and cloud clients
|
||||
local_client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
cloud_client = LlamaStackClient(base_url="http://localhost:5001")
|
||||
```
|
||||
|
||||
2. **Client Selection with Fallback**
|
||||
|
||||
The `select_client` function checks if the local client is available using a lightweight `/health` check. If the local client is unavailable, it automatically switches to the cloud client.
|
||||
|
||||
```python
|
||||
import httpx
|
||||
from termcolor import cprint
|
||||
|
||||
async def select_client() -> LlamaStackClient:
|
||||
"""Use local client if available; otherwise, switch to cloud client."""
|
||||
try:
|
||||
async with httpx.AsyncClient() as http_client:
|
||||
response = await http_client.get(f"{local_client.base_url}/health")
|
||||
if response.status_code == 200:
|
||||
cprint("Using local client.", "yellow")
|
||||
return local_client
|
||||
except httpx.RequestError:
|
||||
pass
|
||||
cprint("Local client unavailable. Switching to cloud client.", "yellow")
|
||||
return cloud_client
|
||||
```
|
||||
|
||||
3. **Generate a Response**
|
||||
|
||||
After selecting the client, you can generate text using `chat_completion`. This example sends a sample prompt to the model and prints the response.
|
||||
|
||||
```python
|
||||
from llama_stack_client.types import UserMessage
|
||||
|
||||
async def get_llama_response(stream: bool = True):
|
||||
client = await select_client() # Selects the available client
|
||||
message = UserMessage(content="hello world, write me a 2 sentence poem about the moon", role="user")
|
||||
cprint(f"User> {message.content}", "green")
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=[message],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if not stream:
|
||||
cprint(f"> Response: {response}", "cyan")
|
||||
else:
|
||||
# Stream tokens progressively
|
||||
async for log in EventLogger().log(response):
|
||||
log.print()
|
||||
```
|
||||
|
||||
4. **Run the Asynchronous Response Generation**
|
||||
|
||||
Use `asyncio.run()` to execute `get_llama_response` in an asynchronous event loop.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
# Initiate the response generation process
|
||||
asyncio.run(get_llama_response())
|
||||
```
|
||||
|
||||
|
||||
### Complete code
|
||||
Summing it up, here's the code for local-cloud model implementation with llama-stack:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
import httpx
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.lib.inference.event_logger import EventLogger
|
||||
from llama_stack_client.types import UserMessage
|
||||
from termcolor import cprint
|
||||
|
||||
local_client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
cloud_client = LlamaStackClient(base_url="http://localhost:5001")
|
||||
|
||||
|
||||
async def select_client() -> LlamaStackClient:
|
||||
try:
|
||||
async with httpx.AsyncClient() as http_client:
|
||||
response = await http_client.get(f"{local_client.base_url}/health")
|
||||
if response.status_code == 200:
|
||||
cprint("Using local client.", "yellow")
|
||||
return local_client
|
||||
except httpx.RequestError:
|
||||
pass
|
||||
cprint("Local client unavailable. Switching to cloud client.", "yellow")
|
||||
return cloud_client
|
||||
|
||||
|
||||
async def get_llama_response(stream: bool = True):
|
||||
client = await select_client()
|
||||
message = UserMessage(
|
||||
content="hello world, write me a 2 sentence poem about the moon", role="user"
|
||||
)
|
||||
cprint(f"User> {message.content}", "green")
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
messages=[message],
|
||||
model="Llama3.2-11B-Vision-Instruct",
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if not stream:
|
||||
cprint(f"> Response: {response}", "cyan")
|
||||
else:
|
||||
async for log in EventLogger().log(response):
|
||||
log.print()
|
||||
|
||||
|
||||
asyncio.run(get_llama_response())
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
With this fundamental, you should be well on your way to leveraging Llama Stack’s text generation capabilities! For more advanced features, refer to the [Llama Stack Documentation](https://llama-stack.readthedocs.io/en/latest/).
|
|
@ -1,111 +0,0 @@
|
|||
|
||||
# Getting Started with Llama Stack
|
||||
|
||||
This guide will walk you through the steps to set up an end-to-end workflow with Llama Stack. It focuses on building a Llama Stack distribution and starting up a Llama Stack server. See our [documentation](../README.md) for more on Llama Stack's capabilities, or visit [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) for example apps.
|
||||
|
||||
## Installation
|
||||
|
||||
The `llama` CLI tool helps you manage the Llama toolchain & agentic systems. After installing the `llama-stack` package, the `llama` command should be available in your path.
|
||||
|
||||
You can install this repository in two ways:
|
||||
|
||||
1. **Install as a package**:
|
||||
Install directly from [PyPI](https://pypi.org/project/llama-stack/) with:
|
||||
```bash
|
||||
pip install llama-stack
|
||||
```
|
||||
|
||||
2. **Install from source**:
|
||||
Follow these steps to install from the source code:
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
|
||||
conda create -n stack python=3.10
|
||||
conda activate stack
|
||||
|
||||
cd llama-stack
|
||||
$CONDA_PREFIX/bin/pip install -e .
|
||||
```
|
||||
|
||||
Refer to the [CLI Reference](./cli_reference.md) for details on Llama CLI commands.
|
||||
|
||||
## Starting Up Llama Stack Server
|
||||
|
||||
There are two ways to start the Llama Stack server:
|
||||
|
||||
1. **Using Docker**:
|
||||
We provide a pre-built Docker image of Llama Stack, available in the [distributions](../distributions/) folder.
|
||||
|
||||
> **Note:** For GPU inference, set environment variables to specify the local directory with your model checkpoints and enable GPU inference.
|
||||
```bash
|
||||
export LLAMA_CHECKPOINT_DIR=~/.llama
|
||||
```
|
||||
Download Llama models with:
|
||||
```
|
||||
llama download --model-id Llama3.1-8B-Instruct
|
||||
```
|
||||
Start a Docker container with:
|
||||
```bash
|
||||
cd llama-stack/distributions/meta-reference-gpu
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
**Tip:** For remote providers, use `docker compose up` with scripts in the [distributions folder](../distributions/).
|
||||
|
||||
2. **Build->Configure->Run via Conda**:
|
||||
For development, build a LlamaStack distribution from scratch.
|
||||
|
||||
**`llama stack build`**
|
||||
Enter build information interactively:
|
||||
```bash
|
||||
llama stack build
|
||||
```
|
||||
|
||||
**`llama stack configure`**
|
||||
Run `llama stack configure <name>` using the name from the build step.
|
||||
```bash
|
||||
llama stack configure my-local-stack
|
||||
```
|
||||
|
||||
**`llama stack run`**
|
||||
Start the server with:
|
||||
```bash
|
||||
llama stack run my-local-stack
|
||||
```
|
||||
|
||||
## Testing with Client
|
||||
|
||||
After setup, test the server with a client:
|
||||
```bash
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env>
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
You can also send a POST request:
|
||||
```bash
|
||||
curl http://localhost:5000/inference/chat_completion \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "Llama3.1-8B-Instruct",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write me a 2-sentence poem about the moon"}
|
||||
],
|
||||
"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
|
||||
}'
|
||||
```
|
||||
|
||||
For testing safety, run:
|
||||
```bash
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
Check our client SDKs for various languages: [Python](https://github.com/meta-llama/llama-stack-client-python), [Node](https://github.com/meta-llama/llama-stack-client-node), [Swift](https://github.com/meta-llama/llama-stack-client-swift), and [Kotlin](https://github.com/meta-llama/llama-stack-client-kotlin).
|
||||
|
||||
## Advanced Guides
|
||||
|
||||
For more on custom Llama Stack distributions, refer to our [Building a Llama Stack Distribution](./building_distro.md) guide.
|
|
@ -1,184 +0,0 @@
|
|||
# Llama Stack Quickstart Guide
|
||||
|
||||
This guide will walk you through setting up an end-to-end workflow with Llama Stack, enabling you to perform text generation using the `Llama3.2-11B-Vision-Instruct` model. Follow these steps to get started quickly.
|
||||
|
||||
## Table of Contents
|
||||
1. [Prerequisite](#prerequisite)
|
||||
2. [Installation](#installation)
|
||||
3. [Download Llama Models](#download-llama-models)
|
||||
4. [Build, Configure, and Run Llama Stack](#build-configure-and-run-llama-stack)
|
||||
5. [Testing with `curl`](#testing-with-curl)
|
||||
6. [Testing with Python](#testing-with-python)
|
||||
7. [Next Steps](#next-steps)
|
||||
|
||||
---
|
||||
|
||||
## Prerequisite
|
||||
|
||||
Ensure you have the following installed on your system:
|
||||
|
||||
- **Conda**: A package, dependency, and environment management tool.
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Installation
|
||||
|
||||
The `llama` CLI tool helps you manage the Llama Stack toolchain and agent systems.
|
||||
|
||||
**Install via PyPI:**
|
||||
|
||||
```bash
|
||||
pip install llama-stack
|
||||
```
|
||||
|
||||
*After installation, the `llama` command should be available in your PATH.*
|
||||
|
||||
---
|
||||
|
||||
## Download Llama Models
|
||||
|
||||
Download the necessary Llama model checkpoints using the `llama` CLI:
|
||||
|
||||
```bash
|
||||
llama download --model-id Llama3.2-11B-Vision-Instruct
|
||||
```
|
||||
|
||||
*Follow the CLI prompts to complete the download. You may need to accept a license agreement. Obtain an instant license [here](https://www.llama.com/llama-downloads/).*
|
||||
|
||||
---
|
||||
|
||||
## Build, Configure, and Run Llama Stack
|
||||
|
||||
### 1. Build the Llama Stack Distribution
|
||||
|
||||
We will default into building a `meta-reference-gpu` distribution, however you could read more about the different distriubtion [here](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/index.html).
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
```
|
||||
|
||||
|
||||
### 2. Run the Llama Stack Distribution
|
||||
> Launching a distribution initializes and configures the necessary APIs and Providers, enabling seamless interaction with the underlying model.
|
||||
|
||||
Start the server with the configured stack:
|
||||
|
||||
```bash
|
||||
cd llama-stack/distributions/meta-reference-gpu
|
||||
llama stack run ./run.yaml
|
||||
```
|
||||
|
||||
*The server will start and listen on `http://localhost:5000` by default.*
|
||||
|
||||
---
|
||||
|
||||
## Testing with `curl`
|
||||
|
||||
After setting up the server, verify it's working by sending a `POST` request using `curl`:
|
||||
|
||||
```bash
|
||||
curl http://localhost:5000/inference/chat_completion \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "Llama3.1-8B-Instruct",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write me a 2-sentence poem about the moon"}
|
||||
],
|
||||
"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
|
||||
}'
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```json
|
||||
{
|
||||
"completion_message": {
|
||||
"role": "assistant",
|
||||
"content": "The moon glows softly in the midnight sky,\nA beacon of wonder, as it catches the eye.",
|
||||
"stop_reason": "out_of_tokens",
|
||||
"tool_calls": []
|
||||
},
|
||||
"logprobs": null
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Testing with Python
|
||||
|
||||
You can also interact with the Llama Stack server using a simple Python script. Below is an example:
|
||||
|
||||
### 1. Install Required Python Packages
|
||||
The `llama-stack-client` library offers a robust and efficient python methods for interacting with the Llama Stack server.
|
||||
|
||||
```bash
|
||||
pip install llama-stack-client
|
||||
```
|
||||
|
||||
### 2. Create a Python Script (`test_llama_stack.py`)
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.types import SystemMessage, UserMessage
|
||||
|
||||
# Initialize the client
|
||||
client = LlamaStackClient(base_url="http://localhost:5000")
|
||||
|
||||
# Create a chat completion request
|
||||
response = client.inference.chat_completion(
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant.", role="system"),
|
||||
UserMessage(content="Write me a 2-sentence poem about the moon", role="user")
|
||||
],
|
||||
model="Llama3.1-8B-Instruct",
|
||||
)
|
||||
|
||||
# Print the response
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
||||
### 3. Run the Python Script
|
||||
|
||||
```bash
|
||||
python test_llama_stack.py
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
```
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it catches the eye.
|
||||
```
|
||||
|
||||
With these steps, you should have a functional Llama Stack setup capable of generating text using the specified model. For more detailed information and advanced configurations, refer to some of our documentation below.
|
||||
|
||||
---
|
||||
|
||||
## Next Steps
|
||||
|
||||
- **Explore Other Guides**: Dive deeper into specific topics by following these guides:
|
||||
- [Understanding Distributions](#)
|
||||
- [Configure your Distro](#)
|
||||
- [Doing Inference API Call and Fetching a Response from Endpoints](#)
|
||||
- [Creating a Conversation Loop](#)
|
||||
- [Sending Image to the Model](#)
|
||||
- [Tool Calling: How to and Details](#)
|
||||
- [Memory API: Show Simple In-Memory Retrieval](#)
|
||||
- [Agents API: Explain Components](#)
|
||||
- [Using Safety API in Conversation](#)
|
||||
- [Prompt Engineering Guide](#)
|
||||
|
||||
- **Explore Client SDKs**: Utilize our client SDKs for various languages to integrate Llama Stack into your applications:
|
||||
- [Python SDK](https://github.com/meta-llama/llama-stack-client-python)
|
||||
- [Node SDK](https://github.com/meta-llama/llama-stack-client-node)
|
||||
- [Swift SDK](https://github.com/meta-llama/llama-stack-client-swift)
|
||||
- [Kotlin SDK](https://github.com/meta-llama/llama-stack-client-kotlin)
|
||||
|
||||
- **Advanced Configuration**: Learn how to customize your Llama Stack distribution by referring to the [Building a Llama Stack Distribution](./building_distro.md) guide.
|
||||
|
||||
- **Explore Example Apps**: Check out [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) for example applications built using Llama Stack.
|
||||
|
||||
|
||||
---
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue