mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-14 06:23:45 +00:00
feat(api)!: support extra_body to embeddings and vector_stores APIs (#3794)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Applies the same pattern from https://github.com/llamastack/llama-stack/pull/3777 to embeddings and vector_stores.create() endpoints. This should _not_ be a breaking change since (a) our tests were already using the `extra_body` parameter when passing in to the backend (b) but the backend probably wasn't extracting the parameters correctly. This PR will fix that. Updated APIs: `openai_embeddings(), openai_create_vector_store(), openai_create_vector_store_file_batch()`
This commit is contained in:
parent
3bb6ef351b
commit
ecc8a554d2
26 changed files with 451 additions and 426 deletions
|
@ -14,6 +14,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
|
@ -124,11 +125,7 @@ class BedrockInferenceAdapter(
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
@ -6,7 +6,10 @@
|
|||
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import CerebrasImplConfig
|
||||
|
@ -20,10 +23,6 @@ class CerebrasInferenceAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
from llama_stack.apis.inference.inference import (
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
|
@ -40,10 +41,6 @@ class LlamaCompatInferenceAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -9,6 +9,7 @@ from openai import NOT_GIVEN
|
|||
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
)
|
||||
|
@ -78,11 +79,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""
|
||||
OpenAI-compatible embeddings for NVIDIA NIM.
|
||||
|
@ -99,11 +96,11 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
|
|||
)
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
|
||||
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
|
||||
user=user if user is not None else NOT_GIVEN,
|
||||
model=await self._get_provider_model_id(params.model),
|
||||
input=params.input,
|
||||
encoding_format=params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
|
||||
dimensions=params.dimensions if params.dimensions is not None else NOT_GIVEN,
|
||||
user=params.user if params.user is not None else NOT_GIVEN,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ from llama_stack.apis.inference import (
|
|||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
|
@ -69,11 +70,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
@ -10,7 +10,10 @@ from collections.abc import Iterable
|
|||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
@ -40,11 +43,7 @@ class _HfAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@ from together import AsyncTogether
|
|||
from together.constants import BASE_URL
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
|
||||
|
@ -62,11 +63,7 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIEmbeddingsRequestWithExtraBody,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""
|
||||
Together's OpenAI-compatible embeddings endpoint is not compatible with
|
||||
|
@ -78,25 +75,27 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
|
|||
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
|
||||
"""
|
||||
# Together support ticket #13332 -> will not fix
|
||||
if user is not None:
|
||||
if params.user is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support user param.")
|
||||
# Together support ticket #13333 -> escalated
|
||||
if dimensions is not None:
|
||||
if params.dimensions is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
encoding_format=encoding_format,
|
||||
model=await self._get_provider_model_id(params.model),
|
||||
input=params.input,
|
||||
encoding_format=params.encoding_format,
|
||||
)
|
||||
|
||||
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
|
||||
response.model = (
|
||||
params.model
|
||||
) # return the user the same model id they provided, avoid exposing the provider model id
|
||||
|
||||
# Together support ticket #13330 -> escalated
|
||||
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
|
||||
if not hasattr(response, "usage") or response.usage is None:
|
||||
logger.warning(
|
||||
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
|
||||
f"Together's embedding endpoint for {params.model} did not return usage information, substituting -1s."
|
||||
)
|
||||
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue