feat(api)!: support extra_body to embeddings and vector_stores APIs (#3794)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s

Applies the same pattern from
https://github.com/llamastack/llama-stack/pull/3777 to embeddings and
vector_stores.create() endpoints.

This should _not_ be a breaking change since (a) our tests were already
using the `extra_body` parameter when passing in to the backend (b) but
the backend probably wasn't extracting the parameters correctly. This PR
will fix that.

Updated APIs: `openai_embeddings(), openai_create_vector_store(),
openai_create_vector_store_file_batch()`
This commit is contained in:
Ashwin Bharambe 2025-10-12 19:01:52 -07:00 committed by GitHub
parent 3bb6ef351b
commit ecc8a554d2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
26 changed files with 451 additions and 426 deletions

View file

@ -14,6 +14,7 @@ from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.inference.inference import (
@ -124,11 +125,7 @@ class BedrockInferenceAdapter(
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -6,7 +6,10 @@
from urllib.parse import urljoin
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.apis.inference import (
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import CerebrasImplConfig
@ -20,10 +23,6 @@ class CerebrasInferenceAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -7,6 +7,7 @@
from llama_stack.apis.inference.inference import (
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.log import get_logger
@ -40,10 +41,6 @@ class LlamaCompatInferenceAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -9,6 +9,7 @@ from openai import NOT_GIVEN
from llama_stack.apis.inference import (
OpenAIEmbeddingData,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
@ -78,11 +79,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
OpenAI-compatible embeddings for NVIDIA NIM.
@ -99,11 +96,11 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
)
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
user=user if user is not None else NOT_GIVEN,
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
dimensions=params.dimensions if params.dimensions is not None else NOT_GIVEN,
user=params.user if params.user is not None else NOT_GIVEN,
extra_body=extra_body,
)

View file

@ -16,6 +16,7 @@ from llama_stack.apis.inference import (
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.models import Model
@ -69,11 +70,7 @@ class PassthroughInferenceAdapter(Inference):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -10,7 +10,10 @@ from collections.abc import Iterable
from huggingface_hub import AsyncInferenceClient, HfApi
from pydantic import SecretStr
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.apis.inference import (
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -40,11 +43,7 @@ class _HfAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -11,6 +11,7 @@ from together import AsyncTogether
from together.constants import BASE_URL
from llama_stack.apis.inference import (
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
@ -62,11 +63,7 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
Together's OpenAI-compatible embeddings endpoint is not compatible with
@ -78,25 +75,27 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
"""
# Together support ticket #13332 -> will not fix
if user is not None:
if params.user is not None:
raise ValueError("Together's embeddings endpoint does not support user param.")
# Together support ticket #13333 -> escalated
if dimensions is not None:
if params.dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format,
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format,
)
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
response.model = (
params.model
) # return the user the same model id they provided, avoid exposing the provider model id
# Together support ticket #13330 -> escalated
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
if not hasattr(response, "usage") or response.usage is None:
logger.warning(
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
f"Together's embedding endpoint for {params.model} did not return usage information, substituting -1s."
)
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)