mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-13 06:07:58 +00:00
feat(api)!: support extra_body to embeddings and vector_stores APIs (#3794)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Applies the same pattern from https://github.com/llamastack/llama-stack/pull/3777 to embeddings and vector_stores.create() endpoints. This should _not_ be a breaking change since (a) our tests were already using the `extra_body` parameter when passing in to the backend (b) but the backend probably wasn't extracting the parameters correctly. This PR will fix that. Updated APIs: `openai_embeddings(), openai_create_vector_store(), openai_create_vector_store_file_batch()`
This commit is contained in:
parent
3bb6ef351b
commit
ecc8a554d2
26 changed files with 451 additions and 426 deletions
|
@ -15,6 +15,7 @@ from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
|||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
|
||||
QueryChunksResponse,
|
||||
VectorStoreChunkingStrategyAuto,
|
||||
VectorStoreFileObject,
|
||||
|
@ -326,8 +327,7 @@ async def test_create_vector_store_file_batch(vector_io_adapter):
|
|||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
assert batch.vector_store_id == store_id
|
||||
|
@ -354,8 +354,7 @@ async def test_retrieve_vector_store_file_batch(vector_io_adapter):
|
|||
|
||||
# Create batch first
|
||||
created_batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Retrieve batch
|
||||
|
@ -388,8 +387,7 @@ async def test_cancel_vector_store_file_batch(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Cancel batch
|
||||
|
@ -434,8 +432,7 @@ async def test_list_files_in_vector_store_file_batch(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# List files
|
||||
|
@ -455,7 +452,7 @@ async def test_file_batch_validation_errors(vector_io_adapter):
|
|||
with pytest.raises(VectorStoreNotFoundError):
|
||||
await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id="nonexistent",
|
||||
file_ids=["file_1"],
|
||||
params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=["file_1"]),
|
||||
)
|
||||
|
||||
# Setup store for remaining tests
|
||||
|
@ -472,8 +469,7 @@ async def test_file_batch_validation_errors(vector_io_adapter):
|
|||
# Test wrong vector store for batch
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=["file_1"],
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=["file_1"])
|
||||
)
|
||||
|
||||
# Create wrong_store so it exists but the batch doesn't belong to it
|
||||
|
@ -520,8 +516,7 @@ async def test_file_batch_pagination(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Test pagination with limit
|
||||
|
@ -593,8 +588,7 @@ async def test_file_batch_status_filtering(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Test filtering by completed status
|
||||
|
@ -636,8 +630,7 @@ async def test_cancel_completed_batch_fails(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Manually update status to completed
|
||||
|
@ -671,8 +664,7 @@ async def test_file_batch_persistence_across_restarts(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
batch_id = batch.id
|
||||
|
||||
|
@ -727,8 +719,7 @@ async def test_cancelled_batch_persists_in_storage(vector_io_adapter):
|
|||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
batch_id = batch.id
|
||||
|
||||
|
@ -775,10 +766,10 @@ async def test_only_in_progress_batches_resumed(vector_io_adapter):
|
|||
|
||||
# Create multiple batches
|
||||
batch1 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_1"]
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=["file_1"])
|
||||
)
|
||||
batch2 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_2"]
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=["file_2"])
|
||||
)
|
||||
|
||||
# Complete one batch (should persist with completed status)
|
||||
|
@ -791,7 +782,7 @@ async def test_only_in_progress_batches_resumed(vector_io_adapter):
|
|||
|
||||
# Create a third batch that stays in progress
|
||||
batch3 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_3"]
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=["file_3"])
|
||||
)
|
||||
|
||||
# Simulate restart - clear memory and reload from persistence
|
||||
|
@ -952,8 +943,7 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter):
|
|||
file_ids = [f"file_{i}" for i in range(8)] # 8 files, but limit should be 5
|
||||
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
vector_store_id=store_id, params=OpenAICreateVectorStoreFileBatchRequestWithExtraBody(file_ids=file_ids)
|
||||
)
|
||||
|
||||
# Give time for the semaphore logic to start processing files
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue