mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-27 16:32:00 +00:00
Merge branch 'main' into chore/standard-unsupported-model-err-msg-2517
This commit is contained in:
commit
ed4a776cc5
29 changed files with 402 additions and 154 deletions
|
|
@ -154,12 +154,6 @@ get_python_cmd() {
|
|||
fi
|
||||
}
|
||||
|
||||
# Add other required item commands generic to all containers
|
||||
add_to_container << EOF
|
||||
# Allows running as non-root user
|
||||
RUN mkdir -p /.llama/providers.d /.cache
|
||||
EOF
|
||||
|
||||
if [ -n "$run_config" ]; then
|
||||
# Copy the run config to the build context since it's an absolute path
|
||||
cp "$run_config" "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
|
|
@ -175,7 +169,7 @@ if [ -n "$run_config" ]; then
|
|||
echo "Copying external providers directory: $external_providers_dir"
|
||||
cp -r "$external_providers_dir" "$BUILD_CONTEXT_DIR/providers.d"
|
||||
add_to_container << EOF
|
||||
COPY providers.d /.llama/providers.d
|
||||
COPY --chmod=g+w providers.d /.llama/providers.d
|
||||
EOF
|
||||
fi
|
||||
|
||||
|
|
@ -268,7 +262,7 @@ fi
|
|||
# Add other require item commands genearic to all containers
|
||||
add_to_container << EOF
|
||||
|
||||
RUN chmod -R g+rw /app /.llama /.cache
|
||||
RUN mkdir -p /.llama /.cache && chmod -R g+rw /app /.llama /.cache
|
||||
EOF
|
||||
|
||||
printf "Containerfile created successfully in %s/Containerfile\n\n" "$TEMP_DIR"
|
||||
|
|
|
|||
|
|
@ -146,7 +146,9 @@ in the runtime configuration to help route to the correct provider.""",
|
|||
|
||||
|
||||
class Provider(BaseModel):
|
||||
provider_id: str
|
||||
# provider_id of None means that the provider is not enabled - this happens
|
||||
# when the provider is enabled via a conditional environment variable
|
||||
provider_id: str | None
|
||||
provider_type: str
|
||||
config: dict[str, Any]
|
||||
|
||||
|
|
|
|||
|
|
@ -48,6 +48,9 @@ class ProviderImpl(Providers):
|
|||
ret = []
|
||||
for api, providers in safe_config.providers.items():
|
||||
for p in providers:
|
||||
# Skip providers that are not enabled
|
||||
if p.provider_id is None:
|
||||
continue
|
||||
ret.append(
|
||||
ProviderInfo(
|
||||
api=api,
|
||||
|
|
|
|||
|
|
@ -255,6 +255,10 @@ async def instantiate_providers(
|
|||
impls: dict[Api, Any] = {}
|
||||
inner_impls_by_provider_id: dict[str, dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
|
||||
for api_str, provider in sorted_providers:
|
||||
# Skip providers that are not enabled
|
||||
if provider.provider_id is None:
|
||||
continue
|
||||
|
||||
deps = {a: impls[a] for a in provider.spec.api_dependencies}
|
||||
for a in provider.spec.optional_api_dependencies:
|
||||
if a in impls:
|
||||
|
|
|
|||
|
|
@ -57,9 +57,8 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
|||
provider_dataset_id = dataset_id
|
||||
|
||||
# infer provider from source
|
||||
if metadata:
|
||||
if metadata.get("provider_id"):
|
||||
provider_id = metadata.get("provider_id") # pass through from nvidia datasetio
|
||||
if metadata and metadata.get("provider_id"):
|
||||
provider_id = metadata.get("provider_id") # pass through from nvidia datasetio
|
||||
elif source.type == DatasetType.rows.value:
|
||||
provider_id = "localfs"
|
||||
elif source.type == DatasetType.uri.value:
|
||||
|
|
|
|||
|
|
@ -14,6 +14,8 @@ from opentelemetry.sdk.trace import SpanProcessor
|
|||
from opentelemetry.trace import Span
|
||||
from opentelemetry.trace.span import format_span_id, format_trace_id
|
||||
|
||||
from llama_stack.providers.utils.telemetry.tracing import LOCAL_ROOT_SPAN_MARKER
|
||||
|
||||
|
||||
class SQLiteSpanProcessor(SpanProcessor):
|
||||
def __init__(self, conn_string):
|
||||
|
|
@ -124,7 +126,7 @@ class SQLiteSpanProcessor(SpanProcessor):
|
|||
(
|
||||
trace_id,
|
||||
service_name,
|
||||
(span_id if span.attributes.get("__root_span__") == "true" else None),
|
||||
(span_id if span.attributes.get(LOCAL_ROOT_SPAN_MARKER) else None),
|
||||
datetime.fromtimestamp(span.start_time / 1e9, UTC).isoformat(),
|
||||
datetime.fromtimestamp(span.end_time / 1e9, UTC).isoformat(),
|
||||
),
|
||||
|
|
|
|||
|
|
@ -137,6 +137,9 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
|
||||
async def initialize(self) -> None:
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
if not self.config.url:
|
||||
raise ValueError("URL is a required parameter for the remote Chroma provider's config")
|
||||
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from pydantic import BaseModel
|
|||
|
||||
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
url: str
|
||||
url: str | None
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
|
|
|
|||
|
|
@ -13,11 +13,11 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
@json_schema_type
|
||||
class PGVectorVectorIOConfig(BaseModel):
|
||||
host: str = Field(default="localhost")
|
||||
port: int = Field(default=5432)
|
||||
db: str = Field(default="postgres")
|
||||
user: str = Field(default="postgres")
|
||||
password: str = Field(default="mysecretpassword")
|
||||
host: str | None = Field(default="localhost")
|
||||
port: int | None = Field(default=5432)
|
||||
db: str | None = Field(default="postgres")
|
||||
user: str | None = Field(default="postgres")
|
||||
password: str | None = Field(default="mysecretpassword")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
|
|
|
|||
|
|
@ -15,7 +15,21 @@ from pydantic import BaseModel, TypeAdapter
|
|||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreListFilesResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
|
|
@ -222,3 +236,108 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
|
||||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
|
|
|||
|
|
@ -35,6 +35,9 @@ INVALID_SPAN_ID = 0x0000000000000000
|
|||
INVALID_TRACE_ID = 0x00000000000000000000000000000000
|
||||
|
||||
ROOT_SPAN_MARKERS = ["__root__", "__root_span__"]
|
||||
# The logical root span may not be visible to this process if a parent context
|
||||
# is passed in. The local root span is the first local span in a trace.
|
||||
LOCAL_ROOT_SPAN_MARKER = "__local_root_span__"
|
||||
|
||||
|
||||
def trace_id_to_str(trace_id: int) -> str:
|
||||
|
|
@ -180,7 +183,13 @@ async def start_trace(name: str, attributes: dict[str, Any] = None) -> TraceCont
|
|||
|
||||
trace_id = generate_trace_id()
|
||||
context = TraceContext(BACKGROUND_LOGGER, trace_id)
|
||||
attributes = dict.fromkeys(ROOT_SPAN_MARKERS, True) | (attributes or {})
|
||||
# Mark this span as the root for the trace for now. The processing of
|
||||
# traceparent context if supplied comes later and will result in the
|
||||
# ROOT_SPAN_MARKERS being removed. Also mark this is the 'local' root,
|
||||
# i.e. the root of the spans originating in this process as this is
|
||||
# needed to ensure that we insert this 'local' root span's id into
|
||||
# the trace record in sqlite store.
|
||||
attributes = dict.fromkeys(ROOT_SPAN_MARKERS, True) | {LOCAL_ROOT_SPAN_MARKER: True} | (attributes or {})
|
||||
context.push_span(name, attributes)
|
||||
|
||||
CURRENT_TRACE_CONTEXT.set(context)
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ providers:
|
|||
- provider_id: ollama
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
||||
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
|
|
@ -32,7 +32,7 @@ providers:
|
|||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -40,7 +40,7 @@ providers:
|
|||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
openai_api_key: ${env.OPENAI_API_KEY:+}
|
||||
datasetio:
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
|
|
@ -48,14 +48,14 @@ providers:
|
|||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/localfs_datasetio.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/localfs_datasetio.db
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/huggingface}/huggingface_datasetio.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/huggingface}/huggingface_datasetio.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
|
|
@ -74,7 +74,7 @@ providers:
|
|||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/agents_store.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/agents_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -86,19 +86,19 @@ providers:
|
|||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/faiss_store.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/faiss_store.db
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
|
||||
max_results: 3
|
||||
|
||||
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/registry.db
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/registry.db
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="inline::meta-reference",
|
||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||
model="${env.INFERENCE_MODEL}",
|
||||
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:null}",
|
||||
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:=null}",
|
||||
),
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
|
|
@ -112,7 +112,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="inline::meta-reference",
|
||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||
model="${env.SAFETY_MODEL}",
|
||||
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:null}",
|
||||
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:=null}",
|
||||
),
|
||||
),
|
||||
],
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
|
|
@ -29,7 +29,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.SAFETY_MODEL}
|
||||
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:null}
|
||||
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
|||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
|
||||
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:+}"),
|
||||
),
|
||||
(
|
||||
"anthropic",
|
||||
|
|
@ -56,7 +56,7 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
|||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
|
||||
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:+}"),
|
||||
),
|
||||
(
|
||||
"gemini",
|
||||
|
|
@ -66,17 +66,17 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
|||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
|
||||
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:+}"),
|
||||
),
|
||||
(
|
||||
"groq",
|
||||
[],
|
||||
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
|
||||
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:+}"),
|
||||
),
|
||||
(
|
||||
"together",
|
||||
[],
|
||||
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
|
||||
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:+}"),
|
||||
),
|
||||
]
|
||||
inference_providers = []
|
||||
|
|
|
|||
|
|
@ -15,20 +15,20 @@ providers:
|
|||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:}
|
||||
api_key: ${env.OPENAI_API_KEY:+}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:}
|
||||
api_key: ${env.ANTHROPIC_API_KEY:+}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:}
|
||||
api_key: ${env.GEMINI_API_KEY:+}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:}
|
||||
api_key: ${env.GROQ_API_KEY:+}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="vllm-inference",
|
||||
provider_type="remote::vllm",
|
||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||
url="${env.VLLM_URL:http://localhost:8000/v1}",
|
||||
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ providers:
|
|||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
||||
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ providers:
|
|||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
||||
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ providers:
|
|||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
||||
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="vllm-inference",
|
||||
provider_type="remote::vllm",
|
||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||
url="${env.VLLM_URL:http://localhost:8000/v1}",
|
||||
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
||||
),
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
|
|
|
|||
|
|
@ -68,7 +68,7 @@ providers:
|
|||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/faiss_store.db
|
||||
- provider_id: ${env.ENABLE_SQLITE_VEC+sqlite-vec}
|
||||
- provider_id: ${env.ENABLE_SQLITE_VEC:+sqlite-vec}
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
||||
|
|
|
|||
|
|
@ -175,7 +175,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_SQLITE_VEC+sqlite-vec}",
|
||||
provider_id="${env.ENABLE_SQLITE_VEC:+sqlite-vec}",
|
||||
provider_type="inline::sqlite-vec",
|
||||
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue