Merge branch 'main' into chore/standard-unsupported-model-err-msg-2517

This commit is contained in:
Rohan Awhad 2025-06-27 13:55:34 -04:00
commit ed4a776cc5
29 changed files with 402 additions and 154 deletions

View file

@ -14,6 +14,8 @@ from opentelemetry.sdk.trace import SpanProcessor
from opentelemetry.trace import Span
from opentelemetry.trace.span import format_span_id, format_trace_id
from llama_stack.providers.utils.telemetry.tracing import LOCAL_ROOT_SPAN_MARKER
class SQLiteSpanProcessor(SpanProcessor):
def __init__(self, conn_string):
@ -124,7 +126,7 @@ class SQLiteSpanProcessor(SpanProcessor):
(
trace_id,
service_name,
(span_id if span.attributes.get("__root_span__") == "true" else None),
(span_id if span.attributes.get(LOCAL_ROOT_SPAN_MARKER) else None),
datetime.fromtimestamp(span.start_time / 1e9, UTC).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9, UTC).isoformat(),
),

View file

@ -137,6 +137,9 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
async def initialize(self) -> None:
if isinstance(self.config, RemoteChromaVectorIOConfig):
if not self.config.url:
raise ValueError("URL is a required parameter for the remote Chroma provider's config")
log.info(f"Connecting to Chroma server at: {self.config.url}")
url = self.config.url.rstrip("/")
parsed = urlparse(url)

View file

@ -10,7 +10,7 @@ from pydantic import BaseModel
class ChromaVectorIOConfig(BaseModel):
url: str
url: str | None
@classmethod
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:

View file

@ -13,11 +13,11 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class PGVectorVectorIOConfig(BaseModel):
host: str = Field(default="localhost")
port: int = Field(default=5432)
db: str = Field(default="postgres")
user: str = Field(default="postgres")
password: str = Field(default="mysecretpassword")
host: str | None = Field(default="localhost")
port: int | None = Field(default=5432)
db: str | None = Field(default="postgres")
user: str | None = Field(default="postgres")
password: str | None = Field(default="mysecretpassword")
@classmethod
def sample_run_config(

View file

@ -15,7 +15,21 @@ from pydantic import BaseModel, TypeAdapter
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
SearchRankingOptions,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreDeleteResponse,
VectorStoreFileContentsResponse,
VectorStoreFileObject,
VectorStoreFileStatus,
VectorStoreListFilesResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
@ -222,3 +236,108 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
return self.cache[vector_db_id]
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: SearchRankingOptions | None = None,
rewrite_query: bool | None = False,
search_mode: str | None = "vector",
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")

View file

@ -35,6 +35,9 @@ INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
ROOT_SPAN_MARKERS = ["__root__", "__root_span__"]
# The logical root span may not be visible to this process if a parent context
# is passed in. The local root span is the first local span in a trace.
LOCAL_ROOT_SPAN_MARKER = "__local_root_span__"
def trace_id_to_str(trace_id: int) -> str:
@ -180,7 +183,13 @@ async def start_trace(name: str, attributes: dict[str, Any] = None) -> TraceCont
trace_id = generate_trace_id()
context = TraceContext(BACKGROUND_LOGGER, trace_id)
attributes = dict.fromkeys(ROOT_SPAN_MARKERS, True) | (attributes or {})
# Mark this span as the root for the trace for now. The processing of
# traceparent context if supplied comes later and will result in the
# ROOT_SPAN_MARKERS being removed. Also mark this is the 'local' root,
# i.e. the root of the spans originating in this process as this is
# needed to ensure that we insert this 'local' root span's id into
# the trace record in sqlite store.
attributes = dict.fromkeys(ROOT_SPAN_MARKERS, True) | {LOCAL_ROOT_SPAN_MARKER: True} | (attributes or {})
context.push_span(name, attributes)
CURRENT_TRACE_CONTEXT.set(context)