Convert TGI to work with openai_compat

This commit is contained in:
Ashwin Bharambe 2024-10-08 12:57:34 -07:00 committed by Ashwin Bharambe
parent 05e73d12b3
commit ed899a5dec
6 changed files with 133 additions and 338 deletions

View file

@ -8,16 +8,22 @@ from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import ( from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools, chat_completion_request_to_prompt,
) )
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from .config import DatabricksImplConfig from .config import DatabricksImplConfig
@ -34,12 +40,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
self, stack_to_provider_models_map=DATABRICKS_SUPPORTED_MODELS self, stack_to_provider_models_map=DATABRICKS_SUPPORTED_MODELS
) )
self.config = config self.config = config
tokenizer = Tokenizer.get_instance() self.formatter = ChatFormat(Tokenizer.get_instance())
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> OpenAI:
return OpenAI(base_url=self.config.url, api_key=self.config.api_token)
async def initialize(self) -> None: async def initialize(self) -> None:
return return
@ -47,35 +48,10 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def shutdown(self) -> None: async def shutdown(self) -> None:
pass pass
async def validate_routing_keys(self, routing_keys: list[str]) -> None: def completion(self, request: CompletionRequest) -> AsyncGenerator:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError() raise NotImplementedError()
def _messages_to_databricks_messages(self, messages: list[Message]) -> list: def chat_completion(
databricks_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
databricks_messages.append({"role": role, "content": message.content})
return databricks_messages
def get_databricks_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
self, self,
model: str, model: str,
messages: List[Message], messages: List[Message],
@ -97,146 +73,39 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
logprobs=logprobs, logprobs=logprobs,
) )
messages = augment_messages_for_tools(request) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
options = self.get_databricks_chat_options(request) if stream:
databricks_model = self.map_to_provider_model(request.model) return self._stream_chat_completion(request, client)
if not request.stream:
r = self.client.chat.completions.create(
model=databricks_model,
messages=self._messages_to_databricks_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else: else:
yield ChatCompletionResponseStreamChunk( return self._nonstream_chat_completion(request, client)
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = "" async def _nonstream_chat_completion(
ipython = False self, request: ChatCompletionRequest, client: OpenAI
stop_reason = None ) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
for chunk in self.client.chat.completions.create( async def _stream_chat_completion(
model=databricks_model, self, request: ChatCompletionRequest, client: OpenAI
messages=self._messages_to_databricks_messages(messages), ) -> AsyncGenerator:
stream=True, params = self._get_params(request)
**options,
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
): ):
if chunk.choices[0].finish_reason: yield chunk
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
if text is None: "model": self.map_to_provider_model(request.model),
continue "prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
# check if its a tool call ( aka starts with <|python_tag|> ) **get_sampling_options(request),
if not ipython and text.startswith("<|python_tag|>"): }
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -10,13 +10,19 @@ from typing import AsyncGenerator
from huggingface_hub import AsyncInferenceClient, HfApi from huggingface_hub import AsyncInferenceClient, HfApi
from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import StopReason
from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import ( from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools, chat_completion_request_to_model_input_info,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
) )
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
@ -30,8 +36,7 @@ class _HfAdapter(Inference):
model_id: str model_id: str
def __init__(self) -> None: def __init__(self) -> None:
self.tokenizer = Tokenizer.get_instance() self.formatter = ChatFormat(Tokenizer.get_instance())
self.formatter = ChatFormat(self.tokenizer)
async def register_model(self, model: ModelDef) -> None: async def register_model(self, model: ModelDef) -> None:
resolved_model = resolve_model(model.identifier) resolved_model = resolve_model(model.identifier)
@ -49,7 +54,7 @@ class _HfAdapter(Inference):
async def shutdown(self) -> None: async def shutdown(self) -> None:
pass pass
async def completion( def completion(
self, self,
model: str, model: str,
content: InterleavedTextMedia, content: InterleavedTextMedia,
@ -59,16 +64,7 @@ class _HfAdapter(Inference):
) -> AsyncGenerator: ) -> AsyncGenerator:
raise NotImplementedError() raise NotImplementedError()
def get_chat_options(self, request: ChatCompletionRequest) -> dict: def chat_completion(
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
self, self,
model: str, model: str,
messages: List[Message], messages: List[Message],
@ -90,145 +86,64 @@ class _HfAdapter(Inference):
logprobs=logprobs, logprobs=logprobs,
) )
messages = augment_messages_for_tools(request) if stream:
model_input = self.formatter.encode_dialog_prompt(messages) return self._stream_chat_completion(request)
prompt = self.tokenizer.decode(model_input.tokens) else:
return self._nonstream_chat_completion(request)
input_tokens = len(model_input.tokens) async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
text="".join(t.text for t in r.details.tokens),
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(request, response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
async for chunk in s:
token_result = chunk.token
choice = OpenAICompatCompletionChoice(text=token_result.text)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = chat_completion_request_to_model_input_info(
request, self.formatter
)
max_new_tokens = min( max_new_tokens = min(
request.sampling_params.max_tokens or (self.max_tokens - input_tokens), request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1, self.max_tokens - input_tokens - 1,
) )
options = get_sampling_options(request)
options = self.get_chat_options(request) return dict(
if not request.stream:
response = await self.client.text_generation(
prompt=prompt, prompt=prompt,
stream=False, stream=request.stream,
details=True, details=True,
max_new_tokens=max_new_tokens, max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"], stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options, **options,
) )
stop_reason = None
if response.details.finish_reason:
if response.details.finish_reason in ["stop", "eos_token"]:
stop_reason = StopReason.end_of_turn
elif response.details.finish_reason == "length":
stop_reason = StopReason.out_of_tokens
generated_text = "".join(t.text for t in response.details.tokens)
completion_message = self.formatter.decode_assistant_message_from_content(
generated_text,
stop_reason,
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
tokens = []
async for response in await self.client.text_generation(
prompt=prompt,
stream=True,
details=True,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
):
token_result = response.token
buffer += token_result.text
tokens.append(token_result.id)
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer = buffer[len("<|python_tag|>") :]
continue
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# parse tool calls and report errors
message = self.formatter.decode_assistant_message(tokens, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
class TGIAdapter(_HfAdapter): class TGIAdapter(_HfAdapter):

View file

@ -48,10 +48,6 @@ class TogetherInferenceAdapter(
self.config = config self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance()) self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> Together:
return Together(api_key=self.config.api_key)
async def initialize(self) -> None: async def initialize(self) -> None:
return return
@ -91,7 +87,6 @@ class TogetherInferenceAdapter(
together_api_key = provider_data.together_api_key together_api_key = provider_data.together_api_key
client = Together(api_key=together_api_key) client = Together(api_key=together_api_key)
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest( request = ChatCompletionRequest(
model=model, model=model,
messages=messages, messages=messages,

View file

@ -55,8 +55,8 @@ def get_expected_stop_reason(model: str):
@pytest_asyncio.fixture( @pytest_asyncio.fixture(
scope="session", scope="session",
params=[ params=[
# {"model": Llama_8B}, {"model": Llama_8B},
{"model": Llama_3B}, # {"model": Llama_3B},
], ],
ids=lambda d: d["model"], ids=lambda d: d["model"],
) )

View file

@ -3,8 +3,11 @@
# #
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from typing import Tuple
from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.chat_format import ChatFormat
from termcolor import cprint from termcolor import cprint
from llama_models.llama3.api.datatypes import * # noqa: F403 from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403
from llama_models.datatypes import ModelFamily from llama_models.datatypes import ModelFamily
@ -28,6 +31,17 @@ def chat_completion_request_to_prompt(
return formatter.tokenizer.decode(model_input.tokens) return formatter.tokenizer.decode(model_input.tokens)
def chat_completion_request_to_model_input_info(
request: ChatCompletionRequest, formatter: ChatFormat
) -> Tuple[str, int]:
messages = augment_messages_for_tools(request)
model_input = formatter.encode_dialog_prompt(messages)
return (
formatter.tokenizer.decode(model_input.tokens),
len(model_input.tokens),
)
def augment_messages_for_tools(request: ChatCompletionRequest) -> List[Message]: def augment_messages_for_tools(request: ChatCompletionRequest) -> List[Message]:
"""Reads chat completion request and augments the messages to handle tools. """Reads chat completion request and augments the messages to handle tools.
For eg. for llama_3_1, add system message with the appropriate tools or For eg. for llama_3_1, add system message with the appropriate tools or

View file

@ -60,6 +60,8 @@ def process_chat_completion_response(
if reason := choice.finish_reason: if reason := choice.finish_reason:
if reason in ["stop", "eos"]: if reason in ["stop", "eos"]:
stop_reason = StopReason.end_of_turn stop_reason = StopReason.end_of_turn
elif reason == "eom":
stop_reason = StopReason.end_of_message
elif reason == "length": elif reason == "length":
stop_reason = StopReason.out_of_tokens stop_reason = StopReason.out_of_tokens
@ -96,7 +98,7 @@ async def process_chat_completion_stream_response(
finish_reason = choice.finish_reason finish_reason = choice.finish_reason
if finish_reason: if finish_reason:
if stop_reason is None and finish_reason in ["stop", "eos"]: if stop_reason is None and finish_reason in ["stop", "eos", "eos_token"]:
stop_reason = StopReason.end_of_turn stop_reason = StopReason.end_of_turn
elif stop_reason is None and finish_reason == "length": elif stop_reason is None and finish_reason == "length":
stop_reason = StopReason.out_of_tokens stop_reason = StopReason.out_of_tokens
@ -118,7 +120,6 @@ async def process_chat_completion_stream_response(
buffer += text buffer += text
continue continue
if ipython:
if text == "<|eot_id|>": if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn stop_reason = StopReason.end_of_turn
text = "" text = ""
@ -128,6 +129,7 @@ async def process_chat_completion_stream_response(
text = "" text = ""
continue continue
if ipython:
buffer += text buffer += text
delta = ToolCallDelta( delta = ToolCallDelta(
content=text, content=text,