mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-07 12:47:37 +00:00
Merge branch 'main' into remove-deprecated-chat-completion
This commit is contained in:
commit
ee6a502289
209 changed files with 109297 additions and 8828 deletions
|
@ -60,7 +60,6 @@ from llama_stack.apis.inference import (
|
|||
StopReason,
|
||||
SystemMessage,
|
||||
ToolDefinition,
|
||||
ToolParamDefinition,
|
||||
ToolResponse,
|
||||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
|
@ -866,20 +865,12 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
for tool_def in self.agent_config.client_tools:
|
||||
if tool_name_to_def.get(tool_def.name, None):
|
||||
raise ValueError(f"Tool {tool_def.name} already exists")
|
||||
|
||||
# Use input_schema from ToolDef directly
|
||||
tool_name_to_def[tool_def.name] = ToolDefinition(
|
||||
tool_name=tool_def.name,
|
||||
description=tool_def.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
items=param.items,
|
||||
title=param.title,
|
||||
default=param.default,
|
||||
)
|
||||
for param in tool_def.parameters
|
||||
},
|
||||
input_schema=tool_def.input_schema,
|
||||
)
|
||||
for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups:
|
||||
toolgroup_name, input_tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
|
||||
|
@ -889,44 +880,34 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
[t.identifier for t in (await self.tool_groups_api.list_tool_groups()).data]
|
||||
)
|
||||
raise ValueError(f"Toolgroup {toolgroup_name} not found, available toolgroups: {available_tool_groups}")
|
||||
if input_tool_name is not None and not any(tool.identifier == input_tool_name for tool in tools.data):
|
||||
if input_tool_name is not None and not any(tool.name == input_tool_name for tool in tools.data):
|
||||
raise ValueError(
|
||||
f"Tool {input_tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.identifier for tool in tools.data])}"
|
||||
f"Tool {input_tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.name for tool in tools.data])}"
|
||||
)
|
||||
|
||||
for tool_def in tools.data:
|
||||
if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP:
|
||||
identifier: str | BuiltinTool | None = tool_def.identifier
|
||||
identifier: str | BuiltinTool | None = tool_def.name
|
||||
if identifier == "web_search":
|
||||
identifier = BuiltinTool.brave_search
|
||||
else:
|
||||
identifier = BuiltinTool(identifier)
|
||||
else:
|
||||
# add if tool_name is unspecified or the tool_def identifier is the same as the tool_name
|
||||
if input_tool_name in (None, tool_def.identifier):
|
||||
identifier = tool_def.identifier
|
||||
if input_tool_name in (None, tool_def.name):
|
||||
identifier = tool_def.name
|
||||
else:
|
||||
identifier = None
|
||||
|
||||
if tool_name_to_def.get(identifier, None):
|
||||
raise ValueError(f"Tool {identifier} already exists")
|
||||
if identifier:
|
||||
tool_name_to_def[tool_def.identifier] = ToolDefinition(
|
||||
tool_name_to_def[identifier] = ToolDefinition(
|
||||
tool_name=identifier,
|
||||
description=tool_def.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
items=param.items,
|
||||
title=param.title,
|
||||
default=param.default,
|
||||
)
|
||||
for param in tool_def.parameters
|
||||
},
|
||||
input_schema=tool_def.input_schema,
|
||||
)
|
||||
tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {})
|
||||
tool_name_to_args[identifier] = toolgroup_to_args.get(toolgroup_name, {})
|
||||
|
||||
self.tool_defs, self.tool_name_to_args = (
|
||||
list(tool_name_to_def.values()),
|
||||
|
@ -970,12 +951,18 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
tool_name_str = tool_name
|
||||
|
||||
logger.info(f"executing tool call: {tool_name_str} with args: {tool_call.arguments}")
|
||||
|
||||
try:
|
||||
args = json.loads(tool_call.arguments)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(f"Failed to parse arguments for tool call: {tool_call.arguments}") from e
|
||||
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=tool_name_str,
|
||||
kwargs={
|
||||
"session_id": session_id,
|
||||
# get the arguments generated by the model and augment with toolgroup arg overrides for the agent
|
||||
**tool_call.arguments,
|
||||
**args,
|
||||
**self.tool_name_to_args.get(tool_name_str, {}),
|
||||
},
|
||||
)
|
||||
|
|
|
@ -41,7 +41,7 @@ from .utils import (
|
|||
convert_response_text_to_chat_response_format,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="openai::responses")
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
||||
|
||||
class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
|
||||
|
|
|
@ -62,22 +62,13 @@ def convert_tooldef_to_chat_tool(tool_def):
|
|||
ChatCompletionToolParam suitable for OpenAI chat completion
|
||||
"""
|
||||
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
internal_tool_def = ToolDefinition(
|
||||
tool_name=tool_def.name,
|
||||
description=tool_def.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
items=param.items,
|
||||
)
|
||||
for param in tool_def.parameters
|
||||
},
|
||||
input_schema=tool_def.input_schema,
|
||||
)
|
||||
return convert_tooldef_to_openai_tool(internal_tool_def)
|
||||
|
||||
|
@ -528,23 +519,15 @@ class StreamingResponseOrchestrator:
|
|||
"""Process all tools and emit appropriate streaming events."""
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from llama_stack.apis.tools import Tool
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
def make_openai_tool(tool_name: str, tool: Tool) -> ChatCompletionToolParam:
|
||||
def make_openai_tool(tool_name: str, tool: ToolDef) -> ChatCompletionToolParam:
|
||||
tool_def = ToolDefinition(
|
||||
tool_name=tool_name,
|
||||
description=tool.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
)
|
||||
for param in tool.parameters
|
||||
},
|
||||
input_schema=tool.input_schema,
|
||||
)
|
||||
return convert_tooldef_to_openai_tool(tool_def)
|
||||
|
||||
|
@ -631,16 +614,11 @@ class StreamingResponseOrchestrator:
|
|||
MCPListToolsTool(
|
||||
name=t.name,
|
||||
description=t.description,
|
||||
input_schema={
|
||||
input_schema=t.input_schema
|
||||
or {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
p.name: {
|
||||
"type": p.parameter_type,
|
||||
"description": p.description,
|
||||
}
|
||||
for p in t.parameters
|
||||
},
|
||||
"required": [p.name for p in t.parameters if p.required],
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
)
|
||||
|
|
|
@ -68,9 +68,7 @@ public class FunctionTagCustomToolGenerator {
|
|||
{
|
||||
"name": "{{t.tool_name}}",
|
||||
"description": "{{t.description}}",
|
||||
"parameters": {
|
||||
"type": "dict",
|
||||
"properties": { {{t.parameters}} }
|
||||
"input_schema": { {{t.input_schema}} }
|
||||
}
|
||||
|
||||
{{/let}}
|
||||
|
|
|
@ -33,7 +33,6 @@ from llama_stack.apis.tools import (
|
|||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.apis.vector_io import (
|
||||
|
@ -301,13 +300,16 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
|||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for. Can be a natural language sentence or keywords.",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to search for. Can be a natural language sentence or keywords.",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
|
|
@ -82,8 +82,7 @@ def _convert_to_vllm_tool_calls_in_response(
|
|||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
arguments_json=call.function.arguments,
|
||||
arguments=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
@ -93,18 +92,6 @@ def _convert_to_vllm_tools_in_request(tools: list[ToolDefinition]) -> list[dict]
|
|||
compat_tools = []
|
||||
|
||||
for tool in tools:
|
||||
properties = {}
|
||||
compat_required = []
|
||||
if tool.parameters:
|
||||
for tool_key, tool_param in tool.parameters.items():
|
||||
properties[tool_key] = {"type": tool_param.param_type}
|
||||
if tool_param.description:
|
||||
properties[tool_key]["description"] = tool_param.description
|
||||
if tool_param.default:
|
||||
properties[tool_key]["default"] = tool_param.default
|
||||
if tool_param.required:
|
||||
compat_required.append(tool_key)
|
||||
|
||||
# The tool.tool_name can be a str or a BuiltinTool enum. If
|
||||
# it's the latter, convert to a string.
|
||||
tool_name = tool.tool_name
|
||||
|
@ -116,10 +103,11 @@ def _convert_to_vllm_tools_in_request(tools: list[ToolDefinition]) -> list[dict]
|
|||
"function": {
|
||||
"name": tool_name,
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
"parameters": tool.input_schema
|
||||
or {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": compat_required,
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
@ -154,7 +142,6 @@ def _process_vllm_chat_completion_end_of_stream(
|
|||
for _index, tool_call_buf in sorted(tool_call_bufs.items()):
|
||||
args_str = tool_call_buf.arguments or "{}"
|
||||
try:
|
||||
args = json.loads(args_str)
|
||||
chunks.append(
|
||||
ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -163,8 +150,7 @@ def _process_vllm_chat_completion_end_of_stream(
|
|||
tool_call=ToolCall(
|
||||
call_id=tool_call_buf.call_id,
|
||||
tool_name=tool_call_buf.tool_name,
|
||||
arguments=args,
|
||||
arguments_json=args_str,
|
||||
arguments=args_str,
|
||||
),
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
|
|
|
@ -15,7 +15,6 @@ from llama_stack.apis.tools import (
|
|||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
|
@ -57,13 +56,16 @@ class BingSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsReq
|
|||
ToolDef(
|
||||
name="web_search",
|
||||
description="Search the web using Bing Search API",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for",
|
||||
parameter_type="string",
|
||||
)
|
||||
],
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to search for",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
|
@ -14,7 +14,6 @@ from llama_stack.apis.tools import (
|
|||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
|
@ -56,13 +55,16 @@ class BraveSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRe
|
|||
ToolDef(
|
||||
name="web_search",
|
||||
description="Search the web for information",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for",
|
||||
parameter_type="string",
|
||||
)
|
||||
],
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to search for",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
built_in_type=BuiltinTool.brave_search,
|
||||
)
|
||||
]
|
||||
|
|
|
@ -15,7 +15,6 @@ from llama_stack.apis.tools import (
|
|||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
|
@ -56,13 +55,16 @@ class TavilySearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
|
|||
ToolDef(
|
||||
name="web_search",
|
||||
description="Search the web for information",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for",
|
||||
parameter_type="string",
|
||||
)
|
||||
],
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to search for",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
|
@ -15,7 +15,6 @@ from llama_stack.apis.tools import (
|
|||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
|
@ -57,13 +56,16 @@ class WolframAlphaToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
|
|||
ToolDef(
|
||||
name="wolfram_alpha",
|
||||
description="Query WolframAlpha for computational knowledge",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to compute",
|
||||
parameter_type="string",
|
||||
)
|
||||
],
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to compute",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ from ..sqlstore.api import ColumnDefinition, ColumnType
|
|||
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from ..sqlstore.sqlstore import SqlStoreConfig, SqlStoreType, sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="inference_store")
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
||||
class InferenceStore:
|
||||
|
|
|
@ -125,7 +125,6 @@ from llama_stack.models.llama.datatypes import (
|
|||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolParamDefinition,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_content_to_url,
|
||||
|
@ -537,18 +536,13 @@ async def convert_message_to_openai_dict(message: Message, download: bool = Fals
|
|||
if isinstance(tool_name, BuiltinTool):
|
||||
tool_name = tool_name.value
|
||||
|
||||
# arguments_json can be None, so attempt it first and fall back to arguments
|
||||
if hasattr(tc, "arguments_json") and tc.arguments_json:
|
||||
arguments = tc.arguments_json
|
||||
else:
|
||||
arguments = json.dumps(tc.arguments)
|
||||
result["tool_calls"].append(
|
||||
{
|
||||
"id": tc.call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": arguments,
|
||||
"arguments": tc.arguments,
|
||||
},
|
||||
}
|
||||
)
|
||||
|
@ -641,7 +635,7 @@ async def convert_message_to_openai_dict_new(
|
|||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
|
||||
arguments=json.dumps(tool.arguments),
|
||||
arguments=tool.arguments, # Already a JSON string, don't double-encode
|
||||
),
|
||||
type="function",
|
||||
)
|
||||
|
@ -684,8 +678,7 @@ def convert_tool_call(
|
|||
valid_tool_call = ToolCall(
|
||||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
arguments=json.loads(tool_call.function.arguments),
|
||||
arguments_json=tool_call.function.arguments,
|
||||
arguments=tool_call.function.arguments,
|
||||
)
|
||||
except Exception:
|
||||
return UnparseableToolCall(
|
||||
|
@ -745,14 +738,8 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
ToolDefinition:
|
||||
tool_name: str | BuiltinTool
|
||||
description: Optional[str]
|
||||
parameters: Optional[Dict[str, ToolParamDefinition]]
|
||||
|
||||
ToolParamDefinition:
|
||||
param_type: str
|
||||
description: Optional[str]
|
||||
required: Optional[bool]
|
||||
default: Optional[Any]
|
||||
|
||||
input_schema: Optional[Dict[str, Any]] # JSON Schema
|
||||
output_schema: Optional[Dict[str, Any]] # JSON Schema (not used by OpenAI)
|
||||
|
||||
OpenAI spec -
|
||||
|
||||
|
@ -761,20 +748,11 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
"function": {
|
||||
"name": tool_name,
|
||||
"description": description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param_name: {
|
||||
"type": param_type,
|
||||
"description": description,
|
||||
"default": default,
|
||||
},
|
||||
...
|
||||
},
|
||||
"required": [param_name, ...],
|
||||
},
|
||||
"parameters": {<JSON Schema>},
|
||||
},
|
||||
}
|
||||
|
||||
NOTE: OpenAI does not support output_schema, so it is dropped here.
|
||||
"""
|
||||
out = {
|
||||
"type": "function",
|
||||
|
@ -783,37 +761,19 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
function = out["function"]
|
||||
|
||||
if isinstance(tool.tool_name, BuiltinTool):
|
||||
function.update(name=tool.tool_name.value) # TODO(mf): is this sufficient?
|
||||
function["name"] = tool.tool_name.value
|
||||
else:
|
||||
function.update(name=tool.tool_name)
|
||||
function["name"] = tool.tool_name
|
||||
|
||||
if tool.description:
|
||||
function.update(description=tool.description)
|
||||
function["description"] = tool.description
|
||||
|
||||
if tool.parameters:
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
}
|
||||
properties = parameters["properties"]
|
||||
required = []
|
||||
for param_name, param in tool.parameters.items():
|
||||
properties[param_name] = to_openai_param_type(param.param_type)
|
||||
if param.description:
|
||||
properties[param_name].update(description=param.description)
|
||||
if param.default:
|
||||
properties[param_name].update(default=param.default)
|
||||
if param.items:
|
||||
properties[param_name].update(items=param.items)
|
||||
if param.title:
|
||||
properties[param_name].update(title=param.title)
|
||||
if param.required:
|
||||
required.append(param_name)
|
||||
if tool.input_schema:
|
||||
# Pass through the entire JSON Schema as-is
|
||||
function["parameters"] = tool.input_schema
|
||||
|
||||
if required:
|
||||
parameters.update(required=required)
|
||||
|
||||
function.update(parameters=parameters)
|
||||
# NOTE: OpenAI does not support output_schema, so we drop it here
|
||||
# It's stored in LlamaStack for validation and other provider usage
|
||||
|
||||
return out
|
||||
|
||||
|
@ -874,22 +834,12 @@ def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) ->
|
|||
tool_fn = tool.get("function", {})
|
||||
tool_name = tool_fn.get("name", None)
|
||||
tool_desc = tool_fn.get("description", None)
|
||||
|
||||
tool_params = tool_fn.get("parameters", None)
|
||||
lls_tool_params = {}
|
||||
if tool_params is not None:
|
||||
tool_param_properties = tool_params.get("properties", {})
|
||||
for tool_param_key, tool_param_value in tool_param_properties.items():
|
||||
tool_param_def = ToolParamDefinition(
|
||||
param_type=str(tool_param_value.get("type", None)),
|
||||
description=tool_param_value.get("description", None),
|
||||
)
|
||||
lls_tool_params[tool_param_key] = tool_param_def
|
||||
|
||||
lls_tool = ToolDefinition(
|
||||
tool_name=tool_name,
|
||||
description=tool_desc,
|
||||
parameters=lls_tool_params,
|
||||
input_schema=tool_params, # Pass through entire JSON Schema
|
||||
)
|
||||
lls_tools.append(lls_tool)
|
||||
return lls_tools
|
||||
|
@ -939,8 +889,7 @@ def _convert_openai_tool_calls(
|
|||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
arguments_json=call.function.arguments,
|
||||
arguments=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
@ -1222,12 +1171,10 @@ async def convert_openai_chat_completion_stream(
|
|||
)
|
||||
|
||||
try:
|
||||
arguments = json.loads(buffer["arguments"])
|
||||
tool_call = ToolCall(
|
||||
call_id=buffer["call_id"],
|
||||
tool_name=buffer["name"],
|
||||
arguments=arguments,
|
||||
arguments_json=buffer["arguments"],
|
||||
arguments=buffer["arguments"],
|
||||
)
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -1390,7 +1337,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
openai_tool_call = OpenAIChoiceDeltaToolCall(
|
||||
index=0,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
arguments=tool_call.arguments_json,
|
||||
arguments=tool_call.arguments,
|
||||
),
|
||||
)
|
||||
delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call])
|
||||
|
|
|
@ -286,34 +286,34 @@ class OpenAIMixin(ModelRegistryHelper, NeedsRequestProviderData, ABC):
|
|||
|
||||
messages = [await _localize_image_url(m) for m in messages]
|
||||
|
||||
resp = await self.client.chat.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
resp = await self.client.chat.completions.create(**params)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_embeddings(
|
||||
|
|
|
@ -25,7 +25,7 @@ from ..sqlstore.api import ColumnDefinition, ColumnType
|
|||
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from ..sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig, SqlStoreType, sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="responses_store")
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
||||
|
||||
class ResponsesStore:
|
||||
|
|
|
@ -20,7 +20,6 @@ from llama_stack.apis.tools import (
|
|||
ListToolDefsResponse,
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
)
|
||||
from llama_stack.core.datatypes import AuthenticationRequiredError
|
||||
from llama_stack.log import get_logger
|
||||
|
@ -113,24 +112,12 @@ async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefs
|
|||
async with client_wrapper(endpoint, headers) as session:
|
||||
tools_result = await session.list_tools()
|
||||
for tool in tools_result.tools:
|
||||
parameters = []
|
||||
for param_name, param_schema in tool.inputSchema.get("properties", {}).items():
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name=param_name,
|
||||
parameter_type=param_schema.get("type", "string"),
|
||||
description=param_schema.get("description", ""),
|
||||
required="default" not in param_schema,
|
||||
items=param_schema.get("items", None),
|
||||
title=param_schema.get("title", None),
|
||||
default=param_schema.get("default", None),
|
||||
)
|
||||
)
|
||||
tools.append(
|
||||
ToolDef(
|
||||
name=tool.name,
|
||||
description=tool.description,
|
||||
parameters=parameters,
|
||||
input_schema=tool.inputSchema,
|
||||
output_schema=getattr(tool, "outputSchema", None),
|
||||
metadata={
|
||||
"endpoint": endpoint,
|
||||
},
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue