mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 04:54:38 +00:00
Merge branch 'main' into remove-deprecated-chat-completion
This commit is contained in:
commit
ee6a502289
209 changed files with 109297 additions and 8828 deletions
|
@ -22,7 +22,7 @@ from ..sqlstore.api import ColumnDefinition, ColumnType
|
|||
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from ..sqlstore.sqlstore import SqlStoreConfig, SqlStoreType, sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="inference_store")
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
||||
class InferenceStore:
|
||||
|
|
|
@ -125,7 +125,6 @@ from llama_stack.models.llama.datatypes import (
|
|||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolParamDefinition,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_content_to_url,
|
||||
|
@ -537,18 +536,13 @@ async def convert_message_to_openai_dict(message: Message, download: bool = Fals
|
|||
if isinstance(tool_name, BuiltinTool):
|
||||
tool_name = tool_name.value
|
||||
|
||||
# arguments_json can be None, so attempt it first and fall back to arguments
|
||||
if hasattr(tc, "arguments_json") and tc.arguments_json:
|
||||
arguments = tc.arguments_json
|
||||
else:
|
||||
arguments = json.dumps(tc.arguments)
|
||||
result["tool_calls"].append(
|
||||
{
|
||||
"id": tc.call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": arguments,
|
||||
"arguments": tc.arguments,
|
||||
},
|
||||
}
|
||||
)
|
||||
|
@ -641,7 +635,7 @@ async def convert_message_to_openai_dict_new(
|
|||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
|
||||
arguments=json.dumps(tool.arguments),
|
||||
arguments=tool.arguments, # Already a JSON string, don't double-encode
|
||||
),
|
||||
type="function",
|
||||
)
|
||||
|
@ -684,8 +678,7 @@ def convert_tool_call(
|
|||
valid_tool_call = ToolCall(
|
||||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
arguments=json.loads(tool_call.function.arguments),
|
||||
arguments_json=tool_call.function.arguments,
|
||||
arguments=tool_call.function.arguments,
|
||||
)
|
||||
except Exception:
|
||||
return UnparseableToolCall(
|
||||
|
@ -745,14 +738,8 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
ToolDefinition:
|
||||
tool_name: str | BuiltinTool
|
||||
description: Optional[str]
|
||||
parameters: Optional[Dict[str, ToolParamDefinition]]
|
||||
|
||||
ToolParamDefinition:
|
||||
param_type: str
|
||||
description: Optional[str]
|
||||
required: Optional[bool]
|
||||
default: Optional[Any]
|
||||
|
||||
input_schema: Optional[Dict[str, Any]] # JSON Schema
|
||||
output_schema: Optional[Dict[str, Any]] # JSON Schema (not used by OpenAI)
|
||||
|
||||
OpenAI spec -
|
||||
|
||||
|
@ -761,20 +748,11 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
"function": {
|
||||
"name": tool_name,
|
||||
"description": description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param_name: {
|
||||
"type": param_type,
|
||||
"description": description,
|
||||
"default": default,
|
||||
},
|
||||
...
|
||||
},
|
||||
"required": [param_name, ...],
|
||||
},
|
||||
"parameters": {<JSON Schema>},
|
||||
},
|
||||
}
|
||||
|
||||
NOTE: OpenAI does not support output_schema, so it is dropped here.
|
||||
"""
|
||||
out = {
|
||||
"type": "function",
|
||||
|
@ -783,37 +761,19 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
|||
function = out["function"]
|
||||
|
||||
if isinstance(tool.tool_name, BuiltinTool):
|
||||
function.update(name=tool.tool_name.value) # TODO(mf): is this sufficient?
|
||||
function["name"] = tool.tool_name.value
|
||||
else:
|
||||
function.update(name=tool.tool_name)
|
||||
function["name"] = tool.tool_name
|
||||
|
||||
if tool.description:
|
||||
function.update(description=tool.description)
|
||||
function["description"] = tool.description
|
||||
|
||||
if tool.parameters:
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
}
|
||||
properties = parameters["properties"]
|
||||
required = []
|
||||
for param_name, param in tool.parameters.items():
|
||||
properties[param_name] = to_openai_param_type(param.param_type)
|
||||
if param.description:
|
||||
properties[param_name].update(description=param.description)
|
||||
if param.default:
|
||||
properties[param_name].update(default=param.default)
|
||||
if param.items:
|
||||
properties[param_name].update(items=param.items)
|
||||
if param.title:
|
||||
properties[param_name].update(title=param.title)
|
||||
if param.required:
|
||||
required.append(param_name)
|
||||
if tool.input_schema:
|
||||
# Pass through the entire JSON Schema as-is
|
||||
function["parameters"] = tool.input_schema
|
||||
|
||||
if required:
|
||||
parameters.update(required=required)
|
||||
|
||||
function.update(parameters=parameters)
|
||||
# NOTE: OpenAI does not support output_schema, so we drop it here
|
||||
# It's stored in LlamaStack for validation and other provider usage
|
||||
|
||||
return out
|
||||
|
||||
|
@ -874,22 +834,12 @@ def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) ->
|
|||
tool_fn = tool.get("function", {})
|
||||
tool_name = tool_fn.get("name", None)
|
||||
tool_desc = tool_fn.get("description", None)
|
||||
|
||||
tool_params = tool_fn.get("parameters", None)
|
||||
lls_tool_params = {}
|
||||
if tool_params is not None:
|
||||
tool_param_properties = tool_params.get("properties", {})
|
||||
for tool_param_key, tool_param_value in tool_param_properties.items():
|
||||
tool_param_def = ToolParamDefinition(
|
||||
param_type=str(tool_param_value.get("type", None)),
|
||||
description=tool_param_value.get("description", None),
|
||||
)
|
||||
lls_tool_params[tool_param_key] = tool_param_def
|
||||
|
||||
lls_tool = ToolDefinition(
|
||||
tool_name=tool_name,
|
||||
description=tool_desc,
|
||||
parameters=lls_tool_params,
|
||||
input_schema=tool_params, # Pass through entire JSON Schema
|
||||
)
|
||||
lls_tools.append(lls_tool)
|
||||
return lls_tools
|
||||
|
@ -939,8 +889,7 @@ def _convert_openai_tool_calls(
|
|||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
arguments_json=call.function.arguments,
|
||||
arguments=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
@ -1222,12 +1171,10 @@ async def convert_openai_chat_completion_stream(
|
|||
)
|
||||
|
||||
try:
|
||||
arguments = json.loads(buffer["arguments"])
|
||||
tool_call = ToolCall(
|
||||
call_id=buffer["call_id"],
|
||||
tool_name=buffer["name"],
|
||||
arguments=arguments,
|
||||
arguments_json=buffer["arguments"],
|
||||
arguments=buffer["arguments"],
|
||||
)
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -1390,7 +1337,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
openai_tool_call = OpenAIChoiceDeltaToolCall(
|
||||
index=0,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
arguments=tool_call.arguments_json,
|
||||
arguments=tool_call.arguments,
|
||||
),
|
||||
)
|
||||
delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call])
|
||||
|
|
|
@ -286,34 +286,34 @@ class OpenAIMixin(ModelRegistryHelper, NeedsRequestProviderData, ABC):
|
|||
|
||||
messages = [await _localize_image_url(m) for m in messages]
|
||||
|
||||
resp = await self.client.chat.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
resp = await self.client.chat.completions.create(**params)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_embeddings(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue