Revert "feat: add batches API with OpenAI compatibility" (#3149)

Reverts llamastack/llama-stack#3088

The PR broke integration tests.
This commit is contained in:
Ashwin Bharambe 2025-08-14 10:08:54 -07:00 committed by GitHub
parent de692162af
commit ee7631b6cf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
26 changed files with 2 additions and 2707 deletions

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,122 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Shared pytest fixtures for batch tests."""
import json
import time
import warnings
from contextlib import contextmanager
from io import BytesIO
import pytest
from llama_stack.apis.files import OpenAIFilePurpose
class BatchHelper:
"""Helper class for creating and managing batch input files."""
def __init__(self, client):
"""Initialize with either a batch_client or openai_client."""
self.client = client
@contextmanager
def create_file(self, content: str | list[dict], filename_prefix="batch_input"):
"""Context manager for creating and cleaning up batch input files.
Args:
content: Either a list of batch request dictionaries or raw string content
filename_prefix: Prefix for the generated filename (or full filename if content is string)
Yields:
The uploaded file object
"""
if isinstance(content, str):
# Handle raw string content (e.g., malformed JSONL, empty files)
file_content = content.encode("utf-8")
else:
# Handle list of batch request dictionaries
jsonl_content = "\n".join(json.dumps(req) for req in content)
file_content = jsonl_content.encode("utf-8")
filename = filename_prefix if filename_prefix.endswith(".jsonl") else f"{filename_prefix}.jsonl"
with BytesIO(file_content) as file_buffer:
file_buffer.name = filename
uploaded_file = self.client.files.create(file=file_buffer, purpose=OpenAIFilePurpose.BATCH)
try:
yield uploaded_file
finally:
try:
self.client.files.delete(uploaded_file.id)
except Exception:
warnings.warn(
f"Failed to cleanup file {uploaded_file.id}: {uploaded_file.filename}",
stacklevel=2,
)
def wait_for(
self,
batch_id: str,
max_wait_time: int = 60,
sleep_interval: int | None = None,
expected_statuses: set[str] | None = None,
timeout_action: str = "fail",
):
"""Wait for a batch to reach a terminal status.
Args:
batch_id: The batch ID to monitor
max_wait_time: Maximum time to wait in seconds (default: 60 seconds)
sleep_interval: Time to sleep between checks in seconds (default: 1/10th of max_wait_time, min 1s, max 15s)
expected_statuses: Set of expected terminal statuses (default: {"completed"})
timeout_action: Action on timeout - "fail" (pytest.fail) or "skip" (pytest.skip)
Returns:
The final batch object
Raises:
pytest.Failed: If batch reaches an unexpected status or timeout_action is "fail"
pytest.Skipped: If timeout_action is "skip" on timeout or unexpected status
"""
if sleep_interval is None:
# Default to 1/10th of max_wait_time, with min 1s and max 15s
sleep_interval = max(1, min(15, max_wait_time // 10))
if expected_statuses is None:
expected_statuses = {"completed"}
terminal_statuses = {"completed", "failed", "cancelled", "expired"}
unexpected_statuses = terminal_statuses - expected_statuses
start_time = time.time()
while time.time() - start_time < max_wait_time:
current_batch = self.client.batches.retrieve(batch_id)
if current_batch.status in expected_statuses:
return current_batch
elif current_batch.status in unexpected_statuses:
error_msg = f"Batch reached unexpected status: {current_batch.status}"
if timeout_action == "skip":
pytest.skip(error_msg)
else:
pytest.fail(error_msg)
time.sleep(sleep_interval)
timeout_msg = f"Batch did not reach expected status {expected_statuses} within {max_wait_time} seconds"
if timeout_action == "skip":
pytest.skip(timeout_msg)
else:
pytest.fail(timeout_msg)
@pytest.fixture
def batch_helper(openai_client):
"""Fixture that provides a BatchHelper instance for OpenAI client."""
return BatchHelper(openai_client)

View file

@ -1,270 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Integration tests for the Llama Stack batch processing functionality.
This module contains comprehensive integration tests for the batch processing API,
using the OpenAI-compatible client interface for consistency.
Test Categories:
1. Core Batch Operations:
- test_batch_creation_and_retrieval: Comprehensive batch creation, structure validation, and retrieval
- test_batch_listing: Basic batch listing functionality
- test_batch_immediate_cancellation: Batch cancellation workflow
# TODO: cancel during processing
2. End-to-End Processing:
- test_batch_e2e_chat_completions: Full chat completions workflow with output and error validation
Note: Error conditions and edge cases are primarily tested in test_batches_errors.py
for better organization and separation of concerns.
CLEANUP WARNING: These tests currently create batches that are not automatically
cleaned up after test completion. This may lead to resource accumulation over
multiple test runs. Only test_batch_immediate_cancellation properly cancels its batch.
The test_batch_e2e_chat_completions test does clean up its output and error files.
"""
import json
class TestBatchesIntegration:
"""Integration tests for the batches API."""
def test_batch_creation_and_retrieval(self, openai_client, batch_helper, text_model_id):
"""Test comprehensive batch creation and retrieval scenarios."""
test_metadata = {
"test_type": "comprehensive",
"purpose": "creation_and_retrieval_test",
"version": "1.0",
"tags": "test,batch",
}
batch_requests = [
{
"custom_id": "request-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests, "batch_creation_test") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata=test_metadata,
)
assert batch.endpoint == "/v1/chat/completions"
assert batch.input_file_id == uploaded_file.id
assert batch.completion_window == "24h"
assert batch.metadata == test_metadata
retrieved_batch = openai_client.batches.retrieve(batch.id)
assert retrieved_batch.id == batch.id
assert retrieved_batch.object == batch.object
assert retrieved_batch.endpoint == batch.endpoint
assert retrieved_batch.input_file_id == batch.input_file_id
assert retrieved_batch.completion_window == batch.completion_window
assert retrieved_batch.metadata == batch.metadata
def test_batch_listing(self, openai_client, batch_helper, text_model_id):
"""
Test batch listing.
This test creates multiple batches and verifies that they can be listed.
It also deletes the input files before execution, which means the batches
will appear as failed due to missing input files. This is expected and
a good thing, because it means no inference is performed.
"""
batch_ids = []
for i in range(2):
batch_requests = [
{
"custom_id": f"request-{i}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": f"Hello {i}"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests, f"batch_input_{i}") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
batch_ids.append(batch.id)
batch_list = openai_client.batches.list()
assert isinstance(batch_list.data, list)
listed_batch_ids = {b.id for b in batch_list.data}
for batch_id in batch_ids:
assert batch_id in listed_batch_ids
def test_batch_immediate_cancellation(self, openai_client, batch_helper, text_model_id):
"""Test immediate batch cancellation."""
batch_requests = [
{
"custom_id": "request-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests) as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
# hopefully cancel the batch before it completes
cancelling_batch = openai_client.batches.cancel(batch.id)
assert cancelling_batch.status in ["cancelling", "cancelled"]
assert isinstance(cancelling_batch.cancelling_at, int), (
f"cancelling_at should be int, got {type(cancelling_batch.cancelling_at)}"
)
final_batch = batch_helper.wait_for(
batch.id,
max_wait_time=3 * 60, # often takes 10-11 minutes, give it 3 min
expected_statuses={"cancelled"},
timeout_action="skip",
)
assert final_batch.status == "cancelled"
assert isinstance(final_batch.cancelled_at, int), (
f"cancelled_at should be int, got {type(final_batch.cancelled_at)}"
)
def test_batch_e2e_chat_completions(self, openai_client, batch_helper, text_model_id):
"""Test end-to-end batch processing for chat completions with both successful and failed operations."""
batch_requests = [
{
"custom_id": "success-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Say hello"}],
"max_tokens": 20,
},
},
{
"custom_id": "error-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "This should fail"}],
"max_tokens": -1, # Invalid negative max_tokens will cause inference error
},
},
]
with batch_helper.create_file(batch_requests) as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={"test": "e2e_success_and_errors_test"},
)
final_batch = batch_helper.wait_for(
batch.id,
max_wait_time=3 * 60, # often takes 2-3 minutes
expected_statuses={"completed"},
timeout_action="skip",
)
# Expecting a completed batch with both successful and failed requests
# Batch(id='batch_xxx',
# completion_window='24h',
# created_at=...,
# endpoint='/v1/chat/completions',
# input_file_id='file-xxx',
# object='batch',
# status='completed',
# output_file_id='file-xxx',
# error_file_id='file-xxx',
# request_counts=BatchRequestCounts(completed=1, failed=1, total=2))
assert final_batch.status == "completed"
assert final_batch.request_counts is not None
assert final_batch.request_counts.total == 2
assert final_batch.request_counts.completed == 1
assert final_batch.request_counts.failed == 1
assert final_batch.output_file_id is not None, "Output file should exist for successful requests"
output_content = openai_client.files.content(final_batch.output_file_id)
if isinstance(output_content, str):
output_text = output_content
else:
output_text = output_content.content.decode("utf-8")
output_lines = output_text.strip().split("\n")
for line in output_lines:
result = json.loads(line)
assert "id" in result
assert "custom_id" in result
assert result["custom_id"] == "success-1"
assert "response" in result
assert result["response"]["status_code"] == 200
assert "body" in result["response"]
assert "choices" in result["response"]["body"]
assert final_batch.error_file_id is not None, "Error file should exist for failed requests"
error_content = openai_client.files.content(final_batch.error_file_id)
if isinstance(error_content, str):
error_text = error_content
else:
error_text = error_content.content.decode("utf-8")
error_lines = error_text.strip().split("\n")
for line in error_lines:
result = json.loads(line)
assert "id" in result
assert "custom_id" in result
assert result["custom_id"] == "error-1"
assert "error" in result
error = result["error"]
assert error is not None
assert "code" in error or "message" in error, "Error should have code or message"
deleted_output_file = openai_client.files.delete(final_batch.output_file_id)
assert deleted_output_file.deleted, f"Output file {final_batch.output_file_id} was not deleted successfully"
deleted_error_file = openai_client.files.delete(final_batch.error_file_id)
assert deleted_error_file.deleted, f"Error file {final_batch.error_file_id} was not deleted successfully"

View file

@ -1,693 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Error handling and edge case tests for the Llama Stack batch processing functionality.
This module focuses exclusively on testing error conditions, validation failures,
and edge cases for batch operations to ensure robust error handling and graceful
degradation.
Test Categories:
1. File and Input Validation:
- test_batch_nonexistent_file_id: Handling invalid file IDs
- test_batch_malformed_jsonl: Processing malformed JSONL input files
- test_file_malformed_batch_file: Handling malformed files at upload time
- test_batch_missing_required_fields: Validation of required request fields
2. API Endpoint and Model Validation:
- test_batch_invalid_endpoint: Invalid endpoint handling during creation
- test_batch_error_handling_invalid_model: Error handling with nonexistent models
- test_batch_endpoint_mismatch: Validation of endpoint/URL consistency
3. Batch Lifecycle Error Handling:
- test_batch_retrieve_nonexistent: Retrieving non-existent batches
- test_batch_cancel_nonexistent: Cancelling non-existent batches
- test_batch_cancel_completed: Attempting to cancel completed batches
4. Parameter and Configuration Validation:
- test_batch_invalid_completion_window: Invalid completion window values
- test_batch_invalid_metadata_types: Invalid metadata type validation
- test_batch_missing_required_body_fields: Validation of required fields in request body
5. Feature Restriction and Compatibility:
- test_batch_streaming_not_supported: Streaming request rejection
- test_batch_mixed_streaming_requests: Mixed streaming/non-streaming validation
Note: Core functionality and OpenAI compatibility tests are located in
test_batches_integration.py for better organization and separation of concerns.
CLEANUP WARNING: These tests create batches to test error conditions but do not
automatically clean them up after test completion. While most error tests create
batches that fail quickly, some may create valid batches that consume resources.
"""
import pytest
from openai import BadRequestError, ConflictError, NotFoundError
class TestBatchesErrorHandling:
"""Error handling and edge case tests for the batches API using OpenAI client."""
def test_batch_nonexistent_file_id(self, openai_client, batch_helper):
"""Test batch creation with nonexistent input file ID."""
batch = openai_client.batches.create(
input_file_id="file-nonexistent-xyz",
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(
# code='invalid_request',
# line=None,
# message='Cannot find file ..., or organization ... does not have access to it.',
# param='file_id')
# ], object='list'),
# failed_at=1754566971,
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 1
error = final_batch.errors.data[0]
assert error.code == "invalid_request"
assert "cannot find file" in error.message.lower()
def test_batch_invalid_endpoint(self, openai_client, batch_helper, text_model_id):
"""Test batch creation with invalid endpoint."""
batch_requests = [
{
"custom_id": "invalid-endpoint",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests) as uploaded_file:
with pytest.raises(BadRequestError) as exc_info:
openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/invalid/endpoint",
completion_window="24h",
)
# Expected -
# Error code: 400 - {
# 'error': {
# 'message': "Invalid value: '/v1/invalid/endpoint'. Supported values are: '/v1/chat/completions', '/v1/completions', '/v1/embeddings', and '/v1/responses'.",
# 'type': 'invalid_request_error',
# 'param': 'endpoint',
# 'code': 'invalid_value'
# }
# }
error_msg = str(exc_info.value).lower()
assert exc_info.value.status_code == 400
assert "invalid value" in error_msg
assert "/v1/invalid/endpoint" in error_msg
assert "supported values" in error_msg
assert "endpoint" in error_msg
assert "invalid_value" in error_msg
def test_batch_malformed_jsonl(self, openai_client, batch_helper):
"""
Test batch with malformed JSONL input.
The /v1/files endpoint requires valid JSONL format, so we provide a well formed line
before a malformed line to ensure we get to the /v1/batches validation stage.
"""
with batch_helper.create_file(
"""{"custom_id": "valid", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "test"}}
{invalid json here""",
"malformed_batch_input.jsonl",
) as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# ...,
# BatchError(code='invalid_json_line',
# line=2,
# message='This line is not parseable as valid JSON.',
# param=None)
# ], object='list'),
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) > 0
error = final_batch.errors.data[-1] # get last error because first may be about the "test" model
assert error.code == "invalid_json_line"
assert error.line == 2
assert "not" in error.message.lower()
assert "valid json" in error.message.lower()
@pytest.mark.xfail(reason="Not all file providers validate content")
@pytest.mark.parametrize("batch_requests", ["", "{malformed json"], ids=["empty", "malformed"])
def test_file_malformed_batch_file(self, openai_client, batch_helper, batch_requests):
"""Test file upload with malformed content."""
with pytest.raises(BadRequestError) as exc_info:
with batch_helper.create_file(batch_requests, "malformed_batch_input_file.jsonl"):
# /v1/files rejects the file, we don't get to batch creation
pass
error_msg = str(exc_info.value).lower()
assert exc_info.value.status_code == 400
assert "invalid file format" in error_msg
assert "jsonl" in error_msg
def test_batch_retrieve_nonexistent(self, openai_client):
"""Test retrieving nonexistent batch."""
with pytest.raises(NotFoundError) as exc_info:
openai_client.batches.retrieve("batch-nonexistent-xyz")
error_msg = str(exc_info.value).lower()
assert exc_info.value.status_code == 404
assert "no batch found" in error_msg or "not found" in error_msg
def test_batch_cancel_nonexistent(self, openai_client):
"""Test cancelling nonexistent batch."""
with pytest.raises(NotFoundError) as exc_info:
openai_client.batches.cancel("batch-nonexistent-xyz")
error_msg = str(exc_info.value).lower()
assert exc_info.value.status_code == 404
assert "no batch found" in error_msg or "not found" in error_msg
def test_batch_cancel_completed(self, openai_client, batch_helper, text_model_id):
"""Test cancelling already completed batch."""
batch_requests = [
{
"custom_id": "cancel-completed",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Quick test"}],
"max_tokens": 5,
},
}
]
with batch_helper.create_file(batch_requests, "cancel_test_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(
batch.id,
max_wait_time=3 * 60, # often take 10-11 min, give it 3 min
expected_statuses={"completed"},
timeout_action="skip",
)
deleted_file = openai_client.files.delete(final_batch.output_file_id)
assert deleted_file.deleted, f"File {final_batch.output_file_id} was not deleted successfully"
with pytest.raises(ConflictError) as exc_info:
openai_client.batches.cancel(batch.id)
# Expecting -
# Error code: 409 - {
# 'error': {
# 'message': "Cannot cancel a batch with status 'completed'.",
# 'type': 'invalid_request_error',
# 'param': None,
# 'code': None
# }
# }
#
# NOTE: Same for "failed", cancelling "cancelled" batches is allowed
error_msg = str(exc_info.value).lower()
assert exc_info.value.status_code == 409
assert "cannot cancel" in error_msg
def test_batch_missing_required_fields(self, openai_client, batch_helper, text_model_id):
"""Test batch with requests missing required fields."""
batch_requests = [
{
# Missing custom_id
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "No custom_id"}],
"max_tokens": 10,
},
},
{
"custom_id": "no-method",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "No method"}],
"max_tokens": 10,
},
},
{
"custom_id": "no-url",
"method": "POST",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "No URL"}],
"max_tokens": 10,
},
},
{
"custom_id": "no-body",
"method": "POST",
"url": "/v1/chat/completions",
},
]
with batch_helper.create_file(batch_requests, "missing_fields_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(
# data=[
# BatchError(
# code='missing_required_parameter',
# line=1,
# message="Missing required parameter: 'custom_id'.",
# param='custom_id'
# ),
# BatchError(
# code='missing_required_parameter',
# line=2,
# message="Missing required parameter: 'method'.",
# param='method'
# ),
# BatchError(
# code='missing_required_parameter',
# line=3,
# message="Missing required parameter: 'url'.",
# param='url'
# ),
# BatchError(
# code='missing_required_parameter',
# line=4,
# message="Missing required parameter: 'body'.",
# param='body'
# )
# ], object='list'),
# failed_at=1754566945,
# ...)
# )
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 4
no_custom_id_error = final_batch.errors.data[0]
assert no_custom_id_error.code == "missing_required_parameter"
assert no_custom_id_error.line == 1
assert "missing" in no_custom_id_error.message.lower()
assert "custom_id" in no_custom_id_error.message.lower()
no_method_error = final_batch.errors.data[1]
assert no_method_error.code == "missing_required_parameter"
assert no_method_error.line == 2
assert "missing" in no_method_error.message.lower()
assert "method" in no_method_error.message.lower()
no_url_error = final_batch.errors.data[2]
assert no_url_error.code == "missing_required_parameter"
assert no_url_error.line == 3
assert "missing" in no_url_error.message.lower()
assert "url" in no_url_error.message.lower()
no_body_error = final_batch.errors.data[3]
assert no_body_error.code == "missing_required_parameter"
assert no_body_error.line == 4
assert "missing" in no_body_error.message.lower()
assert "body" in no_body_error.message.lower()
def test_batch_invalid_completion_window(self, openai_client, batch_helper, text_model_id):
"""Test batch creation with invalid completion window."""
batch_requests = [
{
"custom_id": "invalid-completion-window",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests) as uploaded_file:
for window in ["1h", "48h", "invalid", ""]:
with pytest.raises(BadRequestError) as exc_info:
openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window=window,
)
assert exc_info.value.status_code == 400
error_msg = str(exc_info.value).lower()
assert "error" in error_msg
assert "completion_window" in error_msg
def test_batch_streaming_not_supported(self, openai_client, batch_helper, text_model_id):
"""Test that streaming responses are not supported in batches."""
batch_requests = [
{
"custom_id": "streaming-test",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
"stream": True, # Not supported
},
}
]
with batch_helper.create_file(batch_requests, "streaming_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(code='streaming_unsupported',
# line=1,
# message='Chat Completions: Streaming is not supported in the Batch API.',
# param='body.stream')
# ], object='list'),
# failed_at=1754566965,
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 1
error = final_batch.errors.data[0]
assert error.code == "streaming_unsupported"
assert error.line == 1
assert "streaming" in error.message.lower()
assert "not supported" in error.message.lower()
assert error.param == "body.stream"
assert final_batch.failed_at is not None
def test_batch_mixed_streaming_requests(self, openai_client, batch_helper, text_model_id):
"""
Test batch with mixed streaming and non-streaming requests.
This is distinct from test_batch_streaming_not_supported, which tests a single
streaming request, to ensure an otherwise valid batch fails when a single
streaming request is included.
"""
batch_requests = [
{
"custom_id": "valid-non-streaming-request",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello without streaming"}],
"max_tokens": 10,
},
},
{
"custom_id": "streaming-request",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello with streaming"}],
"max_tokens": 10,
"stream": True, # Not supported
},
},
]
with batch_helper.create_file(batch_requests, "mixed_streaming_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(
# code='streaming_unsupported',
# line=2,
# message='Chat Completions: Streaming is not supported in the Batch API.',
# param='body.stream')
# ], object='list'),
# failed_at=1754574442,
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 1
error = final_batch.errors.data[0]
assert error.code == "streaming_unsupported"
assert error.line == 2
assert "streaming" in error.message.lower()
assert "not supported" in error.message.lower()
assert error.param == "body.stream"
assert final_batch.failed_at is not None
def test_batch_endpoint_mismatch(self, openai_client, batch_helper, text_model_id):
"""Test batch creation with mismatched endpoint and request URL."""
batch_requests = [
{
"custom_id": "endpoint-mismatch",
"method": "POST",
"url": "/v1/embeddings", # Different from batch endpoint
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
},
}
]
with batch_helper.create_file(batch_requests, "endpoint_mismatch_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions", # Different from request URL
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(
# code='invalid_url',
# line=1,
# message='The URL provided for this request does not match the batch endpoint.',
# param='url')
# ], object='list'),
# failed_at=1754566972,
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 1
error = final_batch.errors.data[0]
assert error.line == 1
assert error.code == "invalid_url"
assert "does not match" in error.message.lower()
assert "endpoint" in error.message.lower()
assert final_batch.failed_at is not None
def test_batch_error_handling_invalid_model(self, openai_client, batch_helper):
"""Test batch error handling with invalid model."""
batch_requests = [
{
"custom_id": "invalid-model",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "nonexistent-model-xyz",
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests) as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(code='model_not_found',
# line=1,
# message="The provided model 'nonexistent-model-xyz' is not supported by the Batch API.",
# param='body.model')
# ], object='list'),
# failed_at=1754566978,
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 1
error = final_batch.errors.data[0]
assert error.line == 1
assert error.code == "model_not_found"
assert "not supported" in error.message.lower()
assert error.param == "body.model"
assert final_batch.failed_at is not None
def test_batch_missing_required_body_fields(self, openai_client, batch_helper, text_model_id):
"""Test batch with requests missing required fields in body (model and messages)."""
batch_requests = [
{
"custom_id": "missing-model",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
# Missing model field
"messages": [{"role": "user", "content": "Hello without model"}],
"max_tokens": 10,
},
},
{
"custom_id": "missing-messages",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
# Missing messages field
"max_tokens": 10,
},
},
]
with batch_helper.create_file(batch_requests, "missing_body_fields_batch_input") as uploaded_file:
batch = openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
)
final_batch = batch_helper.wait_for(batch.id, expected_statuses={"failed"})
# Expecting -
# Batch(...,
# status='failed',
# errors=Errors(data=[
# BatchError(
# code='invalid_request',
# line=1,
# message='Model parameter is required.',
# param='body.model'),
# BatchError(
# code='invalid_request',
# line=2,
# message='Messages parameter is required.',
# param='body.messages')
# ], object='list'),
# ...)
assert final_batch.status == "failed"
assert final_batch.errors is not None
assert len(final_batch.errors.data) == 2
model_error = final_batch.errors.data[0]
assert model_error.line == 1
assert "model" in model_error.message.lower()
assert model_error.param == "body.model"
messages_error = final_batch.errors.data[1]
assert messages_error.line == 2
assert "messages" in messages_error.message.lower()
assert messages_error.param == "body.messages"
assert final_batch.failed_at is not None
def test_batch_invalid_metadata_types(self, openai_client, batch_helper, text_model_id):
"""Test batch creation with invalid metadata types (like lists)."""
batch_requests = [
{
"custom_id": "invalid-metadata-type",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": text_model_id,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 10,
},
}
]
with batch_helper.create_file(batch_requests) as uploaded_file:
with pytest.raises(Exception) as exc_info:
openai_client.batches.create(
input_file_id=uploaded_file.id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={
"tags": ["tag1", "tag2"], # Invalid type, should be a string
},
)
# Expecting -
# Error code: 400 - {'error':
# {'message': "Invalid type for 'metadata.tags': expected a string,
# but got an array instead.",
# 'type': 'invalid_request_error', 'param': 'metadata.tags',
# 'code': 'invalid_type'}}
error_msg = str(exc_info.value).lower()
assert "400" in error_msg
assert "tags" in error_msg
assert "string" in error_msg

View file

@ -1,753 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Test suite for the reference implementation of the Batches API.
The tests are categorized and outlined below, keep this updated:
- Batch creation with various parameters and validation:
* test_create_and_retrieve_batch_success (positive)
* test_create_batch_without_metadata (positive)
* test_create_batch_completion_window (negative)
* test_create_batch_invalid_endpoints (negative)
* test_create_batch_invalid_metadata (negative)
- Batch retrieval and error handling for non-existent batches:
* test_retrieve_batch_not_found (negative)
- Batch cancellation with proper status transitions:
* test_cancel_batch_success (positive)
* test_cancel_batch_invalid_statuses (negative)
* test_cancel_batch_not_found (negative)
- Batch listing with pagination and filtering:
* test_list_batches_empty (positive)
* test_list_batches_single_batch (positive)
* test_list_batches_multiple_batches (positive)
* test_list_batches_with_limit (positive)
* test_list_batches_with_pagination (positive)
* test_list_batches_invalid_after (negative)
- Data persistence in the underlying key-value store:
* test_kvstore_persistence (positive)
- Batch processing concurrency control:
* test_max_concurrent_batches (positive)
- Input validation testing (direct _validate_input method tests):
* test_validate_input_file_not_found (negative)
* test_validate_input_file_exists_empty_content (positive)
* test_validate_input_file_mixed_valid_invalid_json (mixed)
* test_validate_input_invalid_model (negative)
* test_validate_input_url_mismatch (negative)
* test_validate_input_multiple_errors_per_request (negative)
* test_validate_input_invalid_request_format (negative)
* test_validate_input_missing_parameters (parametrized negative - custom_id, method, url, body, model, messages missing validation)
* test_validate_input_invalid_parameter_types (parametrized negative - custom_id, url, method, body, model, messages type validation)
The tests use temporary SQLite databases for isolation and mock external
dependencies like inference, files, and models APIs.
"""
import json
import tempfile
from pathlib import Path
from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.apis.batches import BatchObject
from llama_stack.apis.common.errors import ConflictError, ResourceNotFoundError
from llama_stack.providers.inline.batches.reference.batches import ReferenceBatchesImpl
from llama_stack.providers.inline.batches.reference.config import ReferenceBatchesImplConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class TestReferenceBatchesImpl:
"""Test the reference implementation of the Batches API."""
@pytest.fixture
async def provider(self):
"""Create a test provider instance with temporary database."""
with tempfile.TemporaryDirectory() as tmpdir:
db_path = Path(tmpdir) / "test_batches.db"
kvstore_config = SqliteKVStoreConfig(db_path=str(db_path))
config = ReferenceBatchesImplConfig(kvstore=kvstore_config)
# Create kvstore and mock APIs
from unittest.mock import AsyncMock
from llama_stack.providers.utils.kvstore import kvstore_impl
kvstore = await kvstore_impl(config.kvstore)
mock_inference = AsyncMock()
mock_files = AsyncMock()
mock_models = AsyncMock()
provider = ReferenceBatchesImpl(config, mock_inference, mock_files, mock_models, kvstore)
await provider.initialize()
# unit tests should not require background processing
provider.process_batches = False
yield provider
await provider.shutdown()
@pytest.fixture
def sample_batch_data(self):
"""Sample batch data for testing."""
return {
"input_file_id": "file_abc123",
"endpoint": "/v1/chat/completions",
"completion_window": "24h",
"metadata": {"test": "true", "priority": "high"},
}
def _validate_batch_type(self, batch, expected_metadata=None):
"""
Helper function to validate batch object structure and field types.
Note: This validates the direct BatchObject from the provider, not the
client library response which has a different structure.
Args:
batch: The BatchObject instance to validate.
expected_metadata: Optional expected metadata dictionary to validate against.
"""
assert isinstance(batch.id, str)
assert isinstance(batch.completion_window, str)
assert isinstance(batch.created_at, int)
assert isinstance(batch.endpoint, str)
assert isinstance(batch.input_file_id, str)
assert batch.object == "batch"
assert batch.status in [
"validating",
"failed",
"in_progress",
"finalizing",
"completed",
"expired",
"cancelling",
"cancelled",
]
if expected_metadata is not None:
assert batch.metadata == expected_metadata
timestamp_fields = [
"cancelled_at",
"cancelling_at",
"completed_at",
"expired_at",
"expires_at",
"failed_at",
"finalizing_at",
"in_progress_at",
]
for field in timestamp_fields:
field_value = getattr(batch, field, None)
if field_value is not None:
assert isinstance(field_value, int), f"{field} should be int or None, got {type(field_value)}"
file_id_fields = ["error_file_id", "output_file_id"]
for field in file_id_fields:
field_value = getattr(batch, field, None)
if field_value is not None:
assert isinstance(field_value, str), f"{field} should be str or None, got {type(field_value)}"
if hasattr(batch, "request_counts") and batch.request_counts is not None:
assert isinstance(batch.request_counts.completed, int), (
f"request_counts.completed should be int, got {type(batch.request_counts.completed)}"
)
assert isinstance(batch.request_counts.failed, int), (
f"request_counts.failed should be int, got {type(batch.request_counts.failed)}"
)
assert isinstance(batch.request_counts.total, int), (
f"request_counts.total should be int, got {type(batch.request_counts.total)}"
)
if hasattr(batch, "errors") and batch.errors is not None:
assert isinstance(batch.errors, dict), f"errors should be object or dict, got {type(batch.errors)}"
if hasattr(batch.errors, "data") and batch.errors.data is not None:
assert isinstance(batch.errors.data, list), (
f"errors.data should be list or None, got {type(batch.errors.data)}"
)
for i, error_item in enumerate(batch.errors.data):
assert isinstance(error_item, dict), (
f"errors.data[{i}] should be object or dict, got {type(error_item)}"
)
if hasattr(error_item, "code") and error_item.code is not None:
assert isinstance(error_item.code, str), (
f"errors.data[{i}].code should be str or None, got {type(error_item.code)}"
)
if hasattr(error_item, "line") and error_item.line is not None:
assert isinstance(error_item.line, int), (
f"errors.data[{i}].line should be int or None, got {type(error_item.line)}"
)
if hasattr(error_item, "message") and error_item.message is not None:
assert isinstance(error_item.message, str), (
f"errors.data[{i}].message should be str or None, got {type(error_item.message)}"
)
if hasattr(error_item, "param") and error_item.param is not None:
assert isinstance(error_item.param, str), (
f"errors.data[{i}].param should be str or None, got {type(error_item.param)}"
)
if hasattr(batch.errors, "object") and batch.errors.object is not None:
assert isinstance(batch.errors.object, str), (
f"errors.object should be str or None, got {type(batch.errors.object)}"
)
assert batch.errors.object == "list", f"errors.object should be 'list', got {batch.errors.object}"
async def test_create_and_retrieve_batch_success(self, provider, sample_batch_data):
"""Test successful batch creation and retrieval."""
created_batch = await provider.create_batch(**sample_batch_data)
self._validate_batch_type(created_batch, expected_metadata=sample_batch_data["metadata"])
assert created_batch.id.startswith("batch_")
assert len(created_batch.id) > 13
assert created_batch.object == "batch"
assert created_batch.endpoint == sample_batch_data["endpoint"]
assert created_batch.input_file_id == sample_batch_data["input_file_id"]
assert created_batch.completion_window == sample_batch_data["completion_window"]
assert created_batch.status == "validating"
assert created_batch.metadata == sample_batch_data["metadata"]
assert isinstance(created_batch.created_at, int)
assert created_batch.created_at > 0
retrieved_batch = await provider.retrieve_batch(created_batch.id)
self._validate_batch_type(retrieved_batch, expected_metadata=sample_batch_data["metadata"])
assert retrieved_batch.id == created_batch.id
assert retrieved_batch.input_file_id == created_batch.input_file_id
assert retrieved_batch.endpoint == created_batch.endpoint
assert retrieved_batch.status == created_batch.status
assert retrieved_batch.metadata == created_batch.metadata
async def test_create_batch_without_metadata(self, provider):
"""Test batch creation without optional metadata."""
batch = await provider.create_batch(
input_file_id="file_123", endpoint="/v1/chat/completions", completion_window="24h"
)
assert batch.metadata is None
async def test_create_batch_completion_window(self, provider):
"""Test batch creation with invalid completion window."""
with pytest.raises(ValueError, match="Invalid completion_window"):
await provider.create_batch(
input_file_id="file_123", endpoint="/v1/chat/completions", completion_window="now"
)
@pytest.mark.parametrize(
"endpoint",
[
"/v1/embeddings",
"/v1/completions",
"/v1/invalid/endpoint",
"",
],
)
async def test_create_batch_invalid_endpoints(self, provider, endpoint):
"""Test batch creation with various invalid endpoints."""
with pytest.raises(ValueError, match="Invalid endpoint"):
await provider.create_batch(input_file_id="file_123", endpoint=endpoint, completion_window="24h")
async def test_create_batch_invalid_metadata(self, provider):
"""Test that batch creation fails with invalid metadata."""
with pytest.raises(ValueError, match="should be a valid string"):
await provider.create_batch(
input_file_id="file_123",
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={123: "invalid_key"}, # Non-string key
)
with pytest.raises(ValueError, match="should be a valid string"):
await provider.create_batch(
input_file_id="file_123",
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={"valid_key": 456}, # Non-string value
)
async def test_retrieve_batch_not_found(self, provider):
"""Test error when retrieving non-existent batch."""
with pytest.raises(ResourceNotFoundError, match=r"Batch 'nonexistent_batch' not found"):
await provider.retrieve_batch("nonexistent_batch")
async def test_cancel_batch_success(self, provider, sample_batch_data):
"""Test successful batch cancellation."""
created_batch = await provider.create_batch(**sample_batch_data)
assert created_batch.status == "validating"
cancelled_batch = await provider.cancel_batch(created_batch.id)
assert cancelled_batch.id == created_batch.id
assert cancelled_batch.status in ["cancelling", "cancelled"]
assert isinstance(cancelled_batch.cancelling_at, int)
assert cancelled_batch.cancelling_at >= created_batch.created_at
@pytest.mark.parametrize("status", ["failed", "expired", "completed"])
async def test_cancel_batch_invalid_statuses(self, provider, sample_batch_data, status):
"""Test error when cancelling batch in final states."""
provider.process_batches = False
created_batch = await provider.create_batch(**sample_batch_data)
# directly update status in kvstore
await provider._update_batch(created_batch.id, status=status)
with pytest.raises(ConflictError, match=f"Cannot cancel batch '{created_batch.id}' with status '{status}'"):
await provider.cancel_batch(created_batch.id)
async def test_cancel_batch_not_found(self, provider):
"""Test error when cancelling non-existent batch."""
with pytest.raises(ResourceNotFoundError, match=r"Batch 'nonexistent_batch' not found"):
await provider.cancel_batch("nonexistent_batch")
async def test_list_batches_empty(self, provider):
"""Test listing batches when none exist."""
response = await provider.list_batches()
assert response.object == "list"
assert response.data == []
assert response.first_id is None
assert response.last_id is None
assert response.has_more is False
async def test_list_batches_single_batch(self, provider, sample_batch_data):
"""Test listing batches with single batch."""
created_batch = await provider.create_batch(**sample_batch_data)
response = await provider.list_batches()
assert len(response.data) == 1
self._validate_batch_type(response.data[0], expected_metadata=sample_batch_data["metadata"])
assert response.data[0].id == created_batch.id
assert response.first_id == created_batch.id
assert response.last_id == created_batch.id
assert response.has_more is False
async def test_list_batches_multiple_batches(self, provider):
"""Test listing multiple batches."""
batches = [
await provider.create_batch(
input_file_id=f"file_{i}", endpoint="/v1/chat/completions", completion_window="24h"
)
for i in range(3)
]
response = await provider.list_batches()
assert len(response.data) == 3
batch_ids = {batch.id for batch in response.data}
expected_ids = {batch.id for batch in batches}
assert batch_ids == expected_ids
assert response.has_more is False
assert response.first_id in expected_ids
assert response.last_id in expected_ids
async def test_list_batches_with_limit(self, provider):
"""Test listing batches with limit parameter."""
batches = [
await provider.create_batch(
input_file_id=f"file_{i}", endpoint="/v1/chat/completions", completion_window="24h"
)
for i in range(3)
]
response = await provider.list_batches(limit=2)
assert len(response.data) == 2
assert response.has_more is True
assert response.first_id == response.data[0].id
assert response.last_id == response.data[1].id
batch_ids = {batch.id for batch in response.data}
expected_ids = {batch.id for batch in batches}
assert batch_ids.issubset(expected_ids)
async def test_list_batches_with_pagination(self, provider):
"""Test listing batches with pagination using 'after' parameter."""
for i in range(3):
await provider.create_batch(
input_file_id=f"file_{i}", endpoint="/v1/chat/completions", completion_window="24h"
)
# Get first page
first_page = await provider.list_batches(limit=1)
assert len(first_page.data) == 1
assert first_page.has_more is True
# Get second page using 'after'
second_page = await provider.list_batches(limit=1, after=first_page.data[0].id)
assert len(second_page.data) == 1
assert second_page.data[0].id != first_page.data[0].id
# Verify we got the next batch in order
all_batches = await provider.list_batches()
expected_second_batch_id = all_batches.data[1].id
assert second_page.data[0].id == expected_second_batch_id
async def test_list_batches_invalid_after(self, provider, sample_batch_data):
"""Test listing batches with invalid 'after' parameter."""
await provider.create_batch(**sample_batch_data)
response = await provider.list_batches(after="nonexistent_batch")
# Should return all batches (no filtering when 'after' batch not found)
assert len(response.data) == 1
async def test_kvstore_persistence(self, provider, sample_batch_data):
"""Test that batches are properly persisted in kvstore."""
batch = await provider.create_batch(**sample_batch_data)
stored_data = await provider.kvstore.get(f"batch:{batch.id}")
assert stored_data is not None
stored_batch_dict = json.loads(stored_data)
assert stored_batch_dict["id"] == batch.id
assert stored_batch_dict["input_file_id"] == sample_batch_data["input_file_id"]
async def test_validate_input_file_not_found(self, provider):
"""Test _validate_input when input file does not exist."""
provider.files_api.openai_retrieve_file = AsyncMock(side_effect=Exception("File not found"))
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id="nonexistent_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == "invalid_request"
assert errors[0].message == "Cannot find file nonexistent_file."
assert errors[0].param == "input_file_id"
assert errors[0].line is None
async def test_validate_input_file_exists_empty_content(self, provider):
"""Test _validate_input when file exists but is empty."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
mock_response.body = b""
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id="empty_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 0
assert len(requests) == 0
async def test_validate_input_file_mixed_valid_invalid_json(self, provider):
"""Test _validate_input when file contains valid and invalid JSON lines."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
# Line 1: valid JSON with proper body args, Line 2: invalid JSON
mock_response.body = b'{"custom_id": "req-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "test-model", "messages": [{"role": "user", "content": "Hello"}]}}\n{invalid json'
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id="mixed_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
# Should have 1 JSON parsing error from line 2, and 1 valid request from line 1
assert len(errors) == 1
assert len(requests) == 1
assert errors[0].code == "invalid_json_line"
assert errors[0].line == 2
assert errors[0].message == "This line is not parseable as valid JSON."
assert requests[0].custom_id == "req-1"
assert requests[0].method == "POST"
assert requests[0].url == "/v1/chat/completions"
assert requests[0].body["model"] == "test-model"
assert requests[0].body["messages"] == [{"role": "user", "content": "Hello"}]
async def test_validate_input_invalid_model(self, provider):
"""Test _validate_input when file contains request with non-existent model."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
mock_response.body = b'{"custom_id": "req-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "nonexistent-model", "messages": [{"role": "user", "content": "Hello"}]}}'
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
provider.models_api.get_model = AsyncMock(side_effect=Exception("Model not found"))
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id="invalid_model_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == "model_not_found"
assert errors[0].line == 1
assert errors[0].message == "Model 'nonexistent-model' does not exist or is not supported"
assert errors[0].param == "body.model"
@pytest.mark.parametrize(
"param_name,param_path,error_code,error_message",
[
("custom_id", "custom_id", "missing_required_parameter", "Missing required parameter: custom_id"),
("method", "method", "missing_required_parameter", "Missing required parameter: method"),
("url", "url", "missing_required_parameter", "Missing required parameter: url"),
("body", "body", "missing_required_parameter", "Missing required parameter: body"),
("model", "body.model", "invalid_request", "Model parameter is required"),
("messages", "body.messages", "invalid_request", "Messages parameter is required"),
],
)
async def test_validate_input_missing_parameters(self, provider, param_name, param_path, error_code, error_message):
"""Test _validate_input when file contains request with missing required parameters."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
base_request = {
"custom_id": "req-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {"model": "test-model", "messages": [{"role": "user", "content": "Hello"}]},
}
# Remove the specific parameter being tested
if "." in param_path:
top_level, nested_param = param_path.split(".", 1)
del base_request[top_level][nested_param]
else:
del base_request[param_name]
mock_response.body = json.dumps(base_request).encode()
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id=f"missing_{param_name}_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == error_code
assert errors[0].line == 1
assert errors[0].message == error_message
assert errors[0].param == param_path
async def test_validate_input_url_mismatch(self, provider):
"""Test _validate_input when file contains request with URL that doesn't match batch endpoint."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
mock_response.body = b'{"custom_id": "req-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "test-model", "messages": [{"role": "user", "content": "Hello"}]}}'
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions", # This doesn't match the URL in the request
input_file_id="url_mismatch_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == "invalid_url"
assert errors[0].line == 1
assert errors[0].message == "URL provided for this request does not match the batch endpoint"
assert errors[0].param == "url"
async def test_validate_input_multiple_errors_per_request(self, provider):
"""Test _validate_input when a single request has multiple validation errors."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
# Request missing custom_id, has invalid URL, and missing model in body
mock_response.body = (
b'{"method": "POST", "url": "/v1/embeddings", "body": {"messages": [{"role": "user", "content": "Hello"}]}}'
)
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions", # Doesn't match /v1/embeddings in request
input_file_id="multiple_errors_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) >= 2 # At least missing custom_id and URL mismatch
assert len(requests) == 0
for error in errors:
assert error.line == 1
error_codes = {error.code for error in errors}
assert "missing_required_parameter" in error_codes # missing custom_id
assert "invalid_url" in error_codes # URL mismatch
async def test_validate_input_invalid_request_format(self, provider):
"""Test _validate_input when file contains non-object JSON (array, string, number)."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
mock_response.body = b'["not", "a", "request", "object"]'
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id="invalid_format_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == "invalid_request"
assert errors[0].line == 1
assert errors[0].message == "Each line must be a JSON dictionary object"
@pytest.mark.parametrize(
"param_name,param_path,invalid_value,error_message",
[
("custom_id", "custom_id", 12345, "Custom_id must be a string"),
("url", "url", 123, "URL must be a string"),
("method", "method", ["POST"], "Method must be a string"),
("body", "body", ["not", "valid"], "Body must be a JSON dictionary object"),
("model", "body.model", 123, "Model must be a string"),
("messages", "body.messages", "invalid messages format", "Messages must be an array"),
],
)
async def test_validate_input_invalid_parameter_types(
self, provider, param_name, param_path, invalid_value, error_message
):
"""Test _validate_input when file contains request with parameters that have invalid types."""
provider.files_api.openai_retrieve_file = AsyncMock()
mock_response = MagicMock()
base_request = {
"custom_id": "req-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {"model": "test-model", "messages": [{"role": "user", "content": "Hello"}]},
}
# Override the specific parameter with invalid value
if "." in param_path:
top_level, nested_param = param_path.split(".", 1)
base_request[top_level][nested_param] = invalid_value
else:
base_request[param_name] = invalid_value
mock_response.body = json.dumps(base_request).encode()
provider.files_api.openai_retrieve_file_content = AsyncMock(return_value=mock_response)
batch = BatchObject(
id="batch_test",
object="batch",
endpoint="/v1/chat/completions",
input_file_id=f"invalid_{param_name}_type_file",
completion_window="24h",
status="validating",
created_at=1234567890,
)
errors, requests = await provider._validate_input(batch)
assert len(errors) == 1
assert len(requests) == 0
assert errors[0].code == "invalid_request"
assert errors[0].line == 1
assert errors[0].message == error_message
assert errors[0].param == param_path
async def test_max_concurrent_batches(self, provider):
"""Test max_concurrent_batches configuration and concurrency control."""
import asyncio
provider._batch_semaphore = asyncio.Semaphore(2)
provider.process_batches = True # enable because we're testing background processing
active_batches = 0
async def add_and_wait(batch_id: str):
nonlocal active_batches
active_batches += 1
await asyncio.sleep(float("inf"))
# the first thing done in _process_batch is to acquire the semaphore, then call _process_batch_impl,
# so we can replace _process_batch_impl with our mock to control concurrency
provider._process_batch_impl = add_and_wait
for _ in range(3):
await provider.create_batch(
input_file_id="file_id", endpoint="/v1/chat/completions", completion_window="24h"
)
await asyncio.sleep(0.042) # let tasks start
assert active_batches == 2, f"Expected 2 active batches, got {active_batches}"