mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-10 11:39:47 +00:00
datasets api
This commit is contained in:
parent
18fe966e96
commit
f046899a1c
15 changed files with 281 additions and 80 deletions
161
llama_stack/apis/datasets/datasets.py
Normal file
161
llama_stack/apis/datasets/datasets.py
Normal file
|
|
@ -0,0 +1,161 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GenerationInput(BaseModel):
|
||||
messages: List[Message]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GenerationOutput(BaseModel):
|
||||
completion_message: str
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostprocessedGeneration(BaseModel):
|
||||
completion_message: str
|
||||
# structured transformed output from raw_completion_message to compute scorer metrics
|
||||
transformed_generation: Optional[Any] = None
|
||||
|
||||
|
||||
# A sample (row) from dataset
|
||||
TDatasetSample = TypeVar("TDatasetSample")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatasetSample(BaseModel): ...
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DictSample(DatasetSample):
|
||||
data: Dict[str, Any]
|
||||
|
||||
|
||||
# A sample (row) from evals intermediate dataset after preprocessing
|
||||
TPreprocessedSample = TypeVar("TPreprocessedSample")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PreprocessedSample(DatasetSample):
|
||||
generation_input: GenerationInput
|
||||
|
||||
|
||||
# A sample (row) from evals intermediate dataset after inference
|
||||
TGenerationResponseSample = TypeVar("TGenerationResponseSample")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GenerationResponseSample(DatasetSample):
|
||||
generation_output: GenerationOutput
|
||||
|
||||
|
||||
# A sample (row) for prepared evals dataset ready for scoring
|
||||
TScorerInputSample = TypeVar("TScorerInputSample")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScorerInputSample(DatasetSample):
|
||||
generation_output: PostprocessedGeneration
|
||||
expected_output: Union[str, List[str]]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatasetType(Enum):
|
||||
custom = "custom"
|
||||
huggingface = "huggingface"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class HuggingfaceDatasetDef(BaseModel):
|
||||
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
|
||||
identifier: str = Field(
|
||||
description="A unique name for the dataset",
|
||||
)
|
||||
dataset_name: str = Field(
|
||||
description="The name of the dataset into HF (e.g. hellawag)",
|
||||
)
|
||||
kwargs: Dict[str, Any] = Field(
|
||||
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
|
||||
default_factory=dict,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CustomDatasetDef(BaseModel):
|
||||
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
|
||||
identifier: str = Field(
|
||||
description="A unique name for the dataset",
|
||||
)
|
||||
url: str = Field(
|
||||
description="The URL to the dataset",
|
||||
)
|
||||
|
||||
|
||||
DatasetDef = Annotated[
|
||||
Union[
|
||||
HuggingfaceDatasetDef,
|
||||
CustomDatasetDef,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class BaseDataset(ABC, Generic[TDatasetSample]):
|
||||
def __init__(self) -> None:
|
||||
self.type: str = self.__class__.__name__
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def dataset_id(self) -> str:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def __iter__(self) -> Iterator[TDatasetSample]:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def __str__(self) -> str:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def __len__(self) -> int:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def load(self) -> None:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets/create")
|
||||
async def create_dataset(
|
||||
self,
|
||||
dataset_def: DatasetDef,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/datasets/get")
|
||||
async def get_dataset(
|
||||
self,
|
||||
dataset_identifier: str,
|
||||
) -> DatasetDef: ...
|
||||
|
||||
@webmethod(route="/datasets/delete")
|
||||
async def delete_dataset(
|
||||
self,
|
||||
dataset_identifier: str,
|
||||
) -> None: ...
|
||||
Loading…
Add table
Add a link
Reference in a new issue