mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
datasets api
This commit is contained in:
parent
18fe966e96
commit
f046899a1c
15 changed files with 281 additions and 80 deletions
|
@ -4,4 +4,4 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from .dataset import * # noqa: F401 F403
|
from .datasets import * # noqa: F401 F403
|
92
llama_stack/apis/datasets/client.py
Normal file
92
llama_stack/apis/datasets/client.py
Normal file
|
@ -0,0 +1,92 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from .datasets import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetClient(Datasets):
|
||||||
|
def __init__(self, base_url: str):
|
||||||
|
self.base_url = base_url
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def create_dataset(
|
||||||
|
self,
|
||||||
|
dataset_def: DatasetDef,
|
||||||
|
) -> None:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.post(
|
||||||
|
f"{self.base_url}/datasets/create",
|
||||||
|
json={
|
||||||
|
"dataset_def": json.loads(dataset_def.json()),
|
||||||
|
},
|
||||||
|
headers={"Content-Type": "application/json"},
|
||||||
|
timeout=60,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def get_dataset(
|
||||||
|
self,
|
||||||
|
dataset_identifier: str,
|
||||||
|
) -> DatasetDef:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.post(
|
||||||
|
f"{self.base_url}/datasets/create",
|
||||||
|
json={
|
||||||
|
"dataset_identifier": dataset_identifier,
|
||||||
|
},
|
||||||
|
headers={"Content-Type": "application/json"},
|
||||||
|
timeout=60,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
return DatasetDef(**response.json())
|
||||||
|
|
||||||
|
async def delete_dataset(
|
||||||
|
self,
|
||||||
|
dataset_identifier: str,
|
||||||
|
) -> DatasetDef:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.post(
|
||||||
|
f"{self.base_url}/datasets/delete",
|
||||||
|
json={
|
||||||
|
"dataset_identifier": dataset_identifier,
|
||||||
|
},
|
||||||
|
headers={"Content-Type": "application/json"},
|
||||||
|
timeout=60,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
async def run_main(host: str, port: int):
|
||||||
|
client = DatasetClient(f"http://{host}:{port}")
|
||||||
|
|
||||||
|
# Custom Eval Task
|
||||||
|
response = await client.create_dataset(
|
||||||
|
dataset_def=CustomDatasetDef(
|
||||||
|
identifier="test-dataset",
|
||||||
|
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main(host: str, port: int):
|
||||||
|
asyncio.run(run_main(host, port))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(main)
|
|
@ -143,19 +143,19 @@ class BaseDataset(ABC, Generic[TDatasetSample]):
|
||||||
|
|
||||||
class Datasets(Protocol):
|
class Datasets(Protocol):
|
||||||
@webmethod(route="/datasets/create")
|
@webmethod(route="/datasets/create")
|
||||||
def create_dataset(
|
async def create_dataset(
|
||||||
self,
|
self,
|
||||||
dataset: DatasetDef,
|
dataset_def: DatasetDef,
|
||||||
) -> None: ...
|
) -> None: ...
|
||||||
|
|
||||||
@webmethod(route="/datasets/get")
|
@webmethod(route="/datasets/get")
|
||||||
def get_dataset(
|
async def get_dataset(
|
||||||
self,
|
self,
|
||||||
dataset_identifier: str,
|
dataset_identifier: str,
|
||||||
) -> DatasetDef: ...
|
) -> DatasetDef: ...
|
||||||
|
|
||||||
@webmethod(route="/datasets/delete")
|
@webmethod(route="/datasets/delete")
|
||||||
def delete_dataset(
|
async def delete_dataset(
|
||||||
self,
|
self,
|
||||||
dataset_uuid: str,
|
dataset_identifier: str,
|
||||||
) -> None: ...
|
) -> None: ...
|
|
@ -11,7 +11,7 @@ from llama_models.schema_utils import webmethod
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||||
from llama_stack.apis.dataset import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
class EvaluationJob(BaseModel):
|
class EvaluationJob(BaseModel):
|
||||||
|
|
|
@ -73,6 +73,16 @@ class RoutingTableProviderSpec(ProviderSpec):
|
||||||
pip_packages: List[str] = Field(default_factory=list)
|
pip_packages: List[str] = Field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
|
# Example: /datasets
|
||||||
|
class RegistryProviderSpec(ProviderSpec):
|
||||||
|
provider_type: str = "registry"
|
||||||
|
config_class: str = ""
|
||||||
|
docker_image: Optional[str] = None
|
||||||
|
|
||||||
|
module: str
|
||||||
|
pip_packages: List[str] = Field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
class DistributionSpec(BaseModel):
|
class DistributionSpec(BaseModel):
|
||||||
description: Optional[str] = Field(
|
description: Optional[str] = Field(
|
||||||
default="",
|
default="",
|
||||||
|
|
|
@ -21,6 +21,19 @@ class AutoRoutedApiInfo(BaseModel):
|
||||||
router_api: Api
|
router_api: Api
|
||||||
|
|
||||||
|
|
||||||
|
class RegistryApiInfo(BaseModel):
|
||||||
|
registry_api: Api
|
||||||
|
# registry: Registry
|
||||||
|
|
||||||
|
|
||||||
|
def builtin_registry_apis() -> List[RegistryApiInfo]:
|
||||||
|
return [
|
||||||
|
RegistryApiInfo(
|
||||||
|
registry_api=Api.datasets,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
||||||
return [
|
return [
|
||||||
AutoRoutedApiInfo(
|
AutoRoutedApiInfo(
|
||||||
|
@ -42,7 +55,12 @@ def providable_apis() -> List[Api]:
|
||||||
routing_table_apis = set(
|
routing_table_apis = set(
|
||||||
x.routing_table_api for x in builtin_automatically_routed_apis()
|
x.routing_table_api for x in builtin_automatically_routed_apis()
|
||||||
)
|
)
|
||||||
return [api for api in Api if api not in routing_table_apis and api != Api.inspect]
|
registry_apis = set(
|
||||||
|
x.registry_api for x in builtin_registry_apis() if x.registry_api
|
||||||
|
)
|
||||||
|
non_providable_apis = routing_table_apis | registry_apis | {Api.inspect}
|
||||||
|
|
||||||
|
return [api for api in Api if api not in non_providable_apis]
|
||||||
|
|
||||||
|
|
||||||
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:
|
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:
|
||||||
|
|
|
@ -3,3 +3,20 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from llama_stack.providers.datatypes import Api
|
||||||
|
from .datasets.dataset import DatasetRegistryImpl
|
||||||
|
|
||||||
|
|
||||||
|
async def get_registry_impl(api: Api, _deps) -> Any:
|
||||||
|
api_to_registry = {
|
||||||
|
"datasets": DatasetRegistryImpl,
|
||||||
|
}
|
||||||
|
|
||||||
|
if api.value not in api_to_registry:
|
||||||
|
raise ValueError(f"API {api.value} not found in registry map")
|
||||||
|
|
||||||
|
impl = api_to_registry[api.value]()
|
||||||
|
await impl.initialize()
|
||||||
|
return impl
|
||||||
|
|
|
@ -5,9 +5,9 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
# TODO: make these import config based
|
# TODO: make these import config based
|
||||||
from llama_stack.apis.dataset import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
from ..registry import Registry
|
from ..registry import Registry
|
||||||
from .dataset import CustomDataset, HuggingfaceDataset
|
from .dataset_wrappers import CustomDataset, HuggingfaceDataset
|
||||||
|
|
||||||
|
|
||||||
class DatasetRegistry(Registry[BaseDataset]):
|
class DatasetRegistry(Registry[BaseDataset]):
|
||||||
|
|
|
@ -3,76 +3,38 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
import pandas
|
|
||||||
from datasets import Dataset, load_dataset
|
|
||||||
|
|
||||||
from llama_stack.apis.dataset import * # noqa: F403
|
# from llama_stack.apis.datasets import *
|
||||||
|
# from llama_stack.distribution.registry.datasets import DatasetRegistry # noqa: F403
|
||||||
|
# from ..registry import Registry
|
||||||
|
# from .dataset_wrappers import CustomDataset, HuggingfaceDataset
|
||||||
|
|
||||||
|
|
||||||
class CustomDataset(BaseDataset[DictSample]):
|
class DatasetRegistryImpl(Datasets):
|
||||||
def __init__(self, config: CustomDatasetDef) -> None:
|
"""API Impl to interact with underlying dataset registry"""
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.dataset = None
|
|
||||||
self.index = 0
|
|
||||||
|
|
||||||
@property
|
def __init__(
|
||||||
def dataset_id(self) -> str:
|
self,
|
||||||
return self.config.identifier
|
) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
def __iter__(self) -> Iterator[DictSample]:
|
async def initialize(self) -> None:
|
||||||
if not self.dataset:
|
pass
|
||||||
self.load()
|
|
||||||
return (DictSample(data=x) for x in self.dataset)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
async def shutdown(self) -> None:
|
||||||
return f"CustomDataset({self.config})"
|
pass
|
||||||
|
|
||||||
def __len__(self) -> int:
|
async def create_dataset(
|
||||||
if not self.dataset:
|
self,
|
||||||
self.load()
|
dataset_def: DatasetDef,
|
||||||
return len(self.dataset)
|
) -> None:
|
||||||
|
print(f"Creating dataset {dataset.identifier}")
|
||||||
|
|
||||||
def load(self, n_samples: Optional[int] = None) -> None:
|
async def get_dataset(
|
||||||
if self.dataset:
|
self,
|
||||||
return
|
dataset_identifier: str,
|
||||||
|
) -> DatasetDef:
|
||||||
|
pass
|
||||||
|
|
||||||
# TODO: better support w/ data url
|
async def delete_dataset(self, dataset_identifier: str) -> None:
|
||||||
if self.config.url.endswith(".csv"):
|
pass
|
||||||
df = pandas.read_csv(self.config.url)
|
|
||||||
elif self.config.url.endswith(".xlsx"):
|
|
||||||
df = pandas.read_excel(self.config.url)
|
|
||||||
|
|
||||||
if n_samples is not None:
|
|
||||||
df = df.sample(n=n_samples)
|
|
||||||
|
|
||||||
self.dataset = Dataset.from_pandas(df)
|
|
||||||
|
|
||||||
|
|
||||||
class HuggingfaceDataset(BaseDataset[DictSample]):
|
|
||||||
def __init__(self, config: HuggingfaceDatasetDef):
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.dataset = None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def dataset_id(self) -> str:
|
|
||||||
return self.config.identifier
|
|
||||||
|
|
||||||
def __iter__(self) -> Iterator[DictSample]:
|
|
||||||
if not self.dataset:
|
|
||||||
self.load()
|
|
||||||
return (DictSample(data=x) for x in self.dataset)
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return f"HuggingfaceDataset({self.config})"
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
if not self.dataset:
|
|
||||||
self.load()
|
|
||||||
return len(self.dataset)
|
|
||||||
|
|
||||||
def load(self):
|
|
||||||
if self.dataset:
|
|
||||||
return
|
|
||||||
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
|
|
||||||
|
|
|
@ -0,0 +1,78 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
import pandas
|
||||||
|
from datasets import Dataset, load_dataset
|
||||||
|
|
||||||
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
|
class CustomDataset(BaseDataset[DictSample]):
|
||||||
|
def __init__(self, config: CustomDatasetDef) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.dataset = None
|
||||||
|
self.index = 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dataset_id(self) -> str:
|
||||||
|
return self.config.identifier
|
||||||
|
|
||||||
|
def __iter__(self) -> Iterator[DictSample]:
|
||||||
|
if not self.dataset:
|
||||||
|
self.load()
|
||||||
|
return (DictSample(data=x) for x in self.dataset)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return f"CustomDataset({self.config})"
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
if not self.dataset:
|
||||||
|
self.load()
|
||||||
|
return len(self.dataset)
|
||||||
|
|
||||||
|
def load(self, n_samples: Optional[int] = None) -> None:
|
||||||
|
if self.dataset:
|
||||||
|
return
|
||||||
|
|
||||||
|
# TODO: better support w/ data url
|
||||||
|
if self.config.url.endswith(".csv"):
|
||||||
|
df = pandas.read_csv(self.config.url)
|
||||||
|
elif self.config.url.endswith(".xlsx"):
|
||||||
|
df = pandas.read_excel(self.config.url)
|
||||||
|
|
||||||
|
if n_samples is not None:
|
||||||
|
df = df.sample(n=n_samples)
|
||||||
|
|
||||||
|
self.dataset = Dataset.from_pandas(df)
|
||||||
|
|
||||||
|
|
||||||
|
class HuggingfaceDataset(BaseDataset[DictSample]):
|
||||||
|
def __init__(self, config: HuggingfaceDatasetDef):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.dataset = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dataset_id(self) -> str:
|
||||||
|
return self.config.identifier
|
||||||
|
|
||||||
|
def __iter__(self) -> Iterator[DictSample]:
|
||||||
|
if not self.dataset:
|
||||||
|
self.load()
|
||||||
|
return (DictSample(data=x) for x in self.dataset)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return f"HuggingfaceDataset({self.config})"
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
if not self.dataset:
|
||||||
|
self.load()
|
||||||
|
return len(self.dataset)
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
if self.dataset:
|
||||||
|
return
|
||||||
|
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
|
|
@ -12,6 +12,7 @@ from llama_stack.providers.datatypes import * # noqa: F403
|
||||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||||
|
|
||||||
from llama_stack.apis.agents import Agents
|
from llama_stack.apis.agents import Agents
|
||||||
|
from llama_stack.apis.datasets import Datasets
|
||||||
from llama_stack.apis.evals import Evals
|
from llama_stack.apis.evals import Evals
|
||||||
from llama_stack.apis.inference import Inference
|
from llama_stack.apis.inference import Inference
|
||||||
from llama_stack.apis.inspect import Inspect
|
from llama_stack.apis.inspect import Inspect
|
||||||
|
@ -23,6 +24,7 @@ from llama_stack.apis.shields import Shields
|
||||||
from llama_stack.apis.telemetry import Telemetry
|
from llama_stack.apis.telemetry import Telemetry
|
||||||
from llama_stack.distribution.distribution import (
|
from llama_stack.distribution.distribution import (
|
||||||
builtin_automatically_routed_apis,
|
builtin_automatically_routed_apis,
|
||||||
|
builtin_registry_apis,
|
||||||
get_provider_registry,
|
get_provider_registry,
|
||||||
)
|
)
|
||||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||||
|
@ -40,6 +42,7 @@ def api_protocol_map() -> Dict[Api, Any]:
|
||||||
Api.shields: Shields,
|
Api.shields: Shields,
|
||||||
Api.telemetry: Telemetry,
|
Api.telemetry: Telemetry,
|
||||||
Api.evals: Evals,
|
Api.evals: Evals,
|
||||||
|
Api.datasets: Datasets,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -139,6 +142,20 @@ async def resolve_impls_with_routing(run_config: StackRunConfig) -> Dict[Api, An
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for info in builtin_registry_apis():
|
||||||
|
providers_with_specs[info.registry_api.value] = {
|
||||||
|
"__builtin__": ProviderWithSpec(
|
||||||
|
provider_id="__registry__",
|
||||||
|
provider_type="__registry__",
|
||||||
|
config={},
|
||||||
|
spec=RegistryProviderSpec(
|
||||||
|
api=info.registry_api,
|
||||||
|
module="llama_stack.distribution.registry",
|
||||||
|
deps__=[],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
sorted_providers = topological_sort(
|
sorted_providers = topological_sort(
|
||||||
{k: v.values() for k, v in providers_with_specs.items()}
|
{k: v.values() for k, v in providers_with_specs.items()}
|
||||||
)
|
)
|
||||||
|
@ -259,6 +276,12 @@ async def instantiate_provider(
|
||||||
|
|
||||||
config = None
|
config = None
|
||||||
args = [provider_spec.api, inner_impls, deps]
|
args = [provider_spec.api, inner_impls, deps]
|
||||||
|
elif isinstance(provider_spec, RegistryProviderSpec):
|
||||||
|
print("ROUTER PROVIDER SPEC")
|
||||||
|
method = "get_registry_impl"
|
||||||
|
|
||||||
|
config = None
|
||||||
|
args = [provider_spec.api, deps]
|
||||||
else:
|
else:
|
||||||
method = "get_provider_impl"
|
method = "get_provider_impl"
|
||||||
|
|
||||||
|
|
|
@ -28,11 +28,13 @@ class Api(Enum):
|
||||||
models = "models"
|
models = "models"
|
||||||
shields = "shields"
|
shields = "shields"
|
||||||
memory_banks = "memory_banks"
|
memory_banks = "memory_banks"
|
||||||
evals = "evals"
|
|
||||||
|
|
||||||
# built-in API
|
# built-in API
|
||||||
inspect = "inspect"
|
inspect = "inspect"
|
||||||
|
|
||||||
|
evals = "evals"
|
||||||
|
datasets = "datasets"
|
||||||
|
|
||||||
|
|
||||||
class ModelsProtocolPrivate(Protocol):
|
class ModelsProtocolPrivate(Protocol):
|
||||||
async def list_models(self) -> List[ModelDef]: ...
|
async def list_models(self) -> List[ModelDef]: ...
|
||||||
|
|
|
@ -9,11 +9,9 @@ from termcolor import cprint
|
||||||
|
|
||||||
from llama_stack.apis.inference import * # noqa: F403
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
from llama_stack.apis.evals import * # noqa: F403
|
from llama_stack.apis.evals import * # noqa: F403
|
||||||
from llama_stack.apis.dataset import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
|
|
||||||
from .config import MetaReferenceEvalsImplConfig
|
from .config import MetaReferenceEvalsImplConfig
|
||||||
|
|
||||||
# from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
|
|
||||||
from .tasks.run_eval_task import RunEvalTask
|
from .tasks.run_eval_task import RunEvalTask
|
||||||
|
|
||||||
|
|
||||||
|
@ -47,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
|
||||||
eval_task_config = EvaluateTaskConfig(
|
eval_task_config = EvaluateTaskConfig(
|
||||||
dataset_config=EvaluateDatasetConfig(
|
dataset_config=EvaluateDatasetConfig(
|
||||||
dataset_name=dataset,
|
dataset_name=dataset,
|
||||||
row_limit=2,
|
row_limit=3,
|
||||||
),
|
),
|
||||||
generation_config=EvaluateModelGenerationConfig(
|
generation_config=EvaluateModelGenerationConfig(
|
||||||
model=model,
|
model=model,
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
import random
|
import random
|
||||||
|
|
||||||
from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResult
|
from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResult
|
||||||
from llama_stack.apis.dataset.dataset import * # noqa: F401 F403
|
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
|
||||||
|
|
||||||
|
|
||||||
class AggregateScorer(BaseScorer[ScorerInputSample]):
|
class AggregateScorer(BaseScorer[ScorerInputSample]):
|
||||||
|
|
|
@ -12,6 +12,7 @@ apis:
|
||||||
- inference
|
- inference
|
||||||
- safety
|
- safety
|
||||||
- evals
|
- evals
|
||||||
|
- datasets
|
||||||
providers:
|
providers:
|
||||||
evals:
|
evals:
|
||||||
- provider_id: meta-reference
|
- provider_id: meta-reference
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue