Use VectorStoreContent vs InterleavedContent in vector store files

This extracts the existing logic to convert chunks to
VectorStoreContent objects into a reusable method and uses that when
returning our list of Vector Store File contents.

It also adds an xfail test for deleting vector store files, as that's
not implemented yet but parking the implementation of that for now.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-18 15:01:42 -04:00
parent 65869d22a4
commit f0d56316a0
5 changed files with 127 additions and 74 deletions

View file

@ -12,7 +12,6 @@ from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
from llama_stack.apis.common.content_types import InterleavedContentItem
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@ -208,7 +207,7 @@ class VectorStoreFileContentsResponse(BaseModel):
file_id: str
filename: str
attributes: dict[str, Any]
content: list[InterleavedContentItem]
content: list[VectorStoreContent]
@json_schema_type

View file

@ -12,7 +12,6 @@ import uuid
from abc import ABC, abstractmethod
from typing import Any
from llama_stack.apis.common.content_types import InterleavedContentItem, TextContentItem
from llama_stack.apis.files import Files
from llama_stack.apis.files.files import OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB
@ -386,33 +385,7 @@ class OpenAIVectorStoreMixin(ABC):
if not self._matches_filters(chunk.metadata, filters):
continue
# content is InterleavedContent
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
content = self._chunk_to_vector_store_content(chunk)
response_data_item = VectorStoreSearchResponse(
file_id=chunk.metadata.get("file_id", ""),
@ -488,6 +461,36 @@ class OpenAIVectorStoreMixin(ABC):
# Unknown filter type, default to no match
raise ValueError(f"Unsupported filter type: {filter_type}")
def _chunk_to_vector_store_content(self, chunk: Chunk) -> list[VectorStoreContent]:
# content is InterleavedContent
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
return content
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
@ -634,20 +637,14 @@ class OpenAIVectorStoreMixin(ABC):
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
contents: list[InterleavedContentItem] = []
content = []
for chunk in chunks:
content = chunk.content
if isinstance(content, str):
contents.append(TextContentItem(text=content))
elif isinstance(content, InterleavedContentItem):
contents.append(content)
else:
contents.extend(contents)
content.extend(self._chunk_to_vector_store_content(chunk))
return VectorStoreFileContentsResponse(
file_id=file_id,
filename=file_info.get("filename", ""),
attributes=file_info.get("attributes", {}),
content=contents,
content=content,
)
async def openai_update_vector_store_file(
@ -684,6 +681,10 @@ class OpenAIVectorStoreMixin(ABC):
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
# TODO: We need to actually delete the embeddings from the underlying vector store...
# Also uncomment the corresponding integration test marked as xfail
#
# test_openai_vector_store_delete_file_removes_from_vector_store in
# tests/integration/vector_io/test_openai_vector_stores.py
# Update in-memory cache
store_info["file_ids"].remove(file_id)