mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-12 16:16:09 +00:00
Use VectorStoreContent vs InterleavedContent in vector store files
This extracts the existing logic to convert chunks to VectorStoreContent objects into a reusable method and uses that when returning our list of Vector Store File contents. It also adds an xfail test for deleting vector store files, as that's not implemented yet but parking the implementation of that for now. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
65869d22a4
commit
f0d56316a0
5 changed files with 127 additions and 74 deletions
38
docs/_static/llama-stack-spec.html
vendored
38
docs/_static/llama-stack-spec.html
vendored
|
@ -13756,6 +13756,24 @@
|
|||
"type": "object",
|
||||
"title": "Response"
|
||||
},
|
||||
"VectorStoreContent": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {
|
||||
"type": "string",
|
||||
"const": "text"
|
||||
},
|
||||
"text": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"type",
|
||||
"text"
|
||||
],
|
||||
"title": "VectorStoreContent"
|
||||
},
|
||||
"VectorStoreFileContentsResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -13793,7 +13811,7 @@
|
|||
"content": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/InterleavedContentItem"
|
||||
"$ref": "#/components/schemas/VectorStoreContent"
|
||||
}
|
||||
}
|
||||
},
|
||||
|
@ -13879,24 +13897,6 @@
|
|||
],
|
||||
"title": "OpenaiSearchVectorStoreRequest"
|
||||
},
|
||||
"VectorStoreContent": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {
|
||||
"type": "string",
|
||||
"const": "text"
|
||||
},
|
||||
"text": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"type",
|
||||
"text"
|
||||
],
|
||||
"title": "VectorStoreContent"
|
||||
},
|
||||
"VectorStoreSearchResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
|
28
docs/_static/llama-stack-spec.yaml
vendored
28
docs/_static/llama-stack-spec.yaml
vendored
|
@ -9616,6 +9616,19 @@ components:
|
|||
Response:
|
||||
type: object
|
||||
title: Response
|
||||
VectorStoreContent:
|
||||
type: object
|
||||
properties:
|
||||
type:
|
||||
type: string
|
||||
const: text
|
||||
text:
|
||||
type: string
|
||||
additionalProperties: false
|
||||
required:
|
||||
- type
|
||||
- text
|
||||
title: VectorStoreContent
|
||||
VectorStoreFileContentsResponse:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -9636,7 +9649,7 @@ components:
|
|||
content:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/InterleavedContentItem'
|
||||
$ref: '#/components/schemas/VectorStoreContent'
|
||||
additionalProperties: false
|
||||
required:
|
||||
- file_id
|
||||
|
@ -9693,19 +9706,6 @@ components:
|
|||
required:
|
||||
- query
|
||||
title: OpenaiSearchVectorStoreRequest
|
||||
VectorStoreContent:
|
||||
type: object
|
||||
properties:
|
||||
type:
|
||||
type: string
|
||||
const: text
|
||||
text:
|
||||
type: string
|
||||
additionalProperties: false
|
||||
required:
|
||||
- type
|
||||
- text
|
||||
title: VectorStoreContent
|
||||
VectorStoreSearchResponse:
|
||||
type: object
|
||||
properties:
|
||||
|
|
|
@ -12,7 +12,6 @@ from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContentItem
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
|
@ -208,7 +207,7 @@ class VectorStoreFileContentsResponse(BaseModel):
|
|||
file_id: str
|
||||
filename: str
|
||||
attributes: dict[str, Any]
|
||||
content: list[InterleavedContentItem]
|
||||
content: list[VectorStoreContent]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -12,7 +12,6 @@ import uuid
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContentItem, TextContentItem
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.files.files import OpenAIFileObject
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
|
@ -386,33 +385,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if not self._matches_filters(chunk.metadata, filters):
|
||||
continue
|
||||
|
||||
# content is InterleavedContent
|
||||
if isinstance(chunk.content, str):
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content,
|
||||
)
|
||||
]
|
||||
elif isinstance(chunk.content, list):
|
||||
# TODO: Add support for other types of content
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=item.text,
|
||||
)
|
||||
for item in chunk.content
|
||||
if item.type == "text"
|
||||
]
|
||||
else:
|
||||
if chunk.content.type != "text":
|
||||
raise ValueError(f"Unsupported content type: {chunk.content.type}")
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content.text,
|
||||
)
|
||||
]
|
||||
content = self._chunk_to_vector_store_content(chunk)
|
||||
|
||||
response_data_item = VectorStoreSearchResponse(
|
||||
file_id=chunk.metadata.get("file_id", ""),
|
||||
|
@ -488,6 +461,36 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
# Unknown filter type, default to no match
|
||||
raise ValueError(f"Unsupported filter type: {filter_type}")
|
||||
|
||||
def _chunk_to_vector_store_content(self, chunk: Chunk) -> list[VectorStoreContent]:
|
||||
# content is InterleavedContent
|
||||
if isinstance(chunk.content, str):
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content,
|
||||
)
|
||||
]
|
||||
elif isinstance(chunk.content, list):
|
||||
# TODO: Add support for other types of content
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=item.text,
|
||||
)
|
||||
for item in chunk.content
|
||||
if item.type == "text"
|
||||
]
|
||||
else:
|
||||
if chunk.content.type != "text":
|
||||
raise ValueError(f"Unsupported content type: {chunk.content.type}")
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content.text,
|
||||
)
|
||||
]
|
||||
return content
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -634,20 +637,14 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
contents: list[InterleavedContentItem] = []
|
||||
content = []
|
||||
for chunk in chunks:
|
||||
content = chunk.content
|
||||
if isinstance(content, str):
|
||||
contents.append(TextContentItem(text=content))
|
||||
elif isinstance(content, InterleavedContentItem):
|
||||
contents.append(content)
|
||||
else:
|
||||
contents.extend(contents)
|
||||
content.extend(self._chunk_to_vector_store_content(chunk))
|
||||
return VectorStoreFileContentsResponse(
|
||||
file_id=file_id,
|
||||
filename=file_info.get("filename", ""),
|
||||
attributes=file_info.get("attributes", {}),
|
||||
content=contents,
|
||||
content=content,
|
||||
)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
|
@ -684,6 +681,10 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
|
||||
|
||||
# TODO: We need to actually delete the embeddings from the underlying vector store...
|
||||
# Also uncomment the corresponding integration test marked as xfail
|
||||
#
|
||||
# test_openai_vector_store_delete_file_removes_from_vector_store in
|
||||
# tests/integration/vector_io/test_openai_vector_stores.py
|
||||
|
||||
# Update in-memory cache
|
||||
store_info["file_ids"].remove(file_id)
|
||||
|
|
|
@ -440,7 +440,7 @@ def test_openai_vector_store_search_with_max_num_results(
|
|||
assert len(search_response.data) == 2
|
||||
|
||||
|
||||
def test_openai_vector_store_attach_file_response_attributes(compat_client_with_empty_stores, client_with_models):
|
||||
def test_openai_vector_store_attach_file(compat_client_with_empty_stores, client_with_models):
|
||||
"""Test OpenAI vector store attach file."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
|
@ -453,7 +453,7 @@ def test_openai_vector_store_attach_file_response_attributes(compat_client_with_
|
|||
vector_store = compat_client.vector_stores.create(name="test_store")
|
||||
|
||||
# Create a file
|
||||
test_content = b"This is a test file"
|
||||
test_content = b"The secret string is foobazbar."
|
||||
with BytesIO(test_content) as file_buffer:
|
||||
file_buffer.name = "openai_test.txt"
|
||||
file = compat_client.files.create(file=file_buffer, purpose="assistants")
|
||||
|
@ -480,6 +480,16 @@ def test_openai_vector_store_attach_file_response_attributes(compat_client_with_
|
|||
assert updated_vector_store.file_counts.failed == 0
|
||||
assert updated_vector_store.file_counts.in_progress == 0
|
||||
|
||||
# Search using OpenAI API to confirm our file attached
|
||||
search_response = compat_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
|
||||
)
|
||||
assert search_response is not None
|
||||
assert len(search_response.data) > 0
|
||||
top_result = search_response.data[0]
|
||||
top_content = top_result.content[0].text
|
||||
assert "foobazbar" in top_content.lower()
|
||||
|
||||
|
||||
def test_openai_vector_store_attach_files_on_creation(compat_client_with_empty_stores, client_with_models):
|
||||
"""Test OpenAI vector store attach files on creation."""
|
||||
|
@ -689,6 +699,49 @@ def test_openai_vector_store_delete_file(compat_client_with_empty_stores, client
|
|||
assert updated_vector_store.file_counts.in_progress == 0
|
||||
|
||||
|
||||
# TODO: Remove this xfail once we have a way to remove embeddings from vector store
|
||||
@pytest.mark.xfail(reason="Vector Store Files delete doesn't remove embeddings from vecntor store", strict=True)
|
||||
def test_openai_vector_store_delete_file_removes_from_vector_store(compat_client_with_empty_stores, client_with_models):
|
||||
"""Test OpenAI vector store delete file removes from vector store."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
|
||||
pytest.skip("Vector Store Files attach is not yet supported with LlamaStackClient")
|
||||
|
||||
compat_client = compat_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
vector_store = compat_client.vector_stores.create(name="test_store")
|
||||
|
||||
# Create a file
|
||||
test_content = b"The secret string is foobazbar."
|
||||
with BytesIO(test_content) as file_buffer:
|
||||
file_buffer.name = "openai_test.txt"
|
||||
file = compat_client.files.create(file=file_buffer, purpose="assistants")
|
||||
|
||||
# Attach the file to the vector store
|
||||
file_attach_response = compat_client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id,
|
||||
file_id=file.id,
|
||||
)
|
||||
assert file_attach_response.status == "completed"
|
||||
|
||||
# Search using OpenAI API to confirm our file attached
|
||||
search_response = compat_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
|
||||
)
|
||||
assert "foobazbar" in search_response.data[0].content[0].text.lower()
|
||||
|
||||
# Delete the file
|
||||
compat_client.vector_stores.files.delete(vector_store_id=vector_store.id, file_id=file.id)
|
||||
|
||||
# Search using OpenAI API to confirm our file deleted
|
||||
search_response = compat_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
|
||||
)
|
||||
assert not search_response.data
|
||||
|
||||
|
||||
def test_openai_vector_store_update_file(compat_client_with_empty_stores, client_with_models):
|
||||
"""Test OpenAI vector store update file."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue