Fixed multiple bugs.

This commit is contained in:
ilya-kolchinsky 2025-03-06 16:46:59 +01:00
parent 6cbc298edb
commit f10a412898
7 changed files with 102 additions and 78 deletions

View file

@ -32,14 +32,15 @@ class PreprocessingDataFormat(Enum):
json = "json"
html = "html"
csv = "csv"
txt = "txt"
@json_schema_type
class PreprocessorInput(BaseModel):
preprocessor_input_id: str
preprocessor_input_type: Optional[PreprocessingDataType] = None
preprocessor_input_format: Optional[PreprocessingDataFormat] = None
path_or_content: str | InterleavedContent | URL
class PreprocessingDataElement(BaseModel):
data_element_id: str
data_element_type: Optional[PreprocessingDataType] = None
data_element_format: Optional[PreprocessingDataFormat] = None
data_element_path_or_content: str | InterleavedContent | URL | Chunk | None
PreprocessorOptions = Dict[str, Any]
@ -57,8 +58,8 @@ PreprocessorChain = List[PreprocessorChainElement]
@json_schema_type
class PreprocessorResponse(BaseModel):
success: bool
preprocessor_output_type: PreprocessingDataType
results: Optional[List[str | InterleavedContent | Chunk]] = None
output_data_type: PreprocessingDataType
results: Optional[List[PreprocessingDataElement]] = None
class PreprocessorStore(Protocol):
@ -76,7 +77,7 @@ class Preprocessing(Protocol):
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse: ...
@ -84,5 +85,5 @@ class Preprocessing(Protocol):
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse: ...

View file

@ -36,8 +36,8 @@ from llama_stack.apis.inference import (
from llama_stack.apis.models import ModelType
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessorChain,
PreprocessorInput,
PreprocessorOptions,
PreprocessorResponse,
)
@ -509,7 +509,7 @@ class PreprocessingRouter(Preprocessing):
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse:
return await self.routing_table.get_provider_impl(preprocessor_id).preprocess(
@ -521,7 +521,7 @@ class PreprocessingRouter(Preprocessing):
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
preprocessor_impls = [self.routing_table.get_provider_impl(p.preprocessor_id) for p in preprocessors]
return await execute_preprocessor_chain(preprocessors, preprocessor_impls, preprocessor_inputs)

View file

@ -9,8 +9,8 @@ from typing import List
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessorChain,
PreprocessorInput,
PreprocessorResponse,
)
@ -38,7 +38,7 @@ def validate_chain(chain_impls: List[Preprocessing]) -> bool:
async def execute_preprocessor_chain(
preprocessor_chain: PreprocessorChain,
preprocessor_chain_impls: List[Preprocessing],
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
if not validate_chain(preprocessor_chain_impls):
return PreprocessorResponse(success=False, results=[])
@ -57,11 +57,9 @@ async def execute_preprocessor_chain(
)
if not response.success:
log.error(f"Preprocessor {current_params.preprocessor_id} returned an error")
return PreprocessorResponse(
success=False, preprocessor_output_type=response.preprocessor_output_type, results=[]
)
return PreprocessorResponse(success=False, output_data_type=response.output_data_type, results=[])
current_outputs = response.results
current_inputs = current_outputs
current_result_type = response.preprocessor_output_type
current_result_type = response.output_data_type
return PreprocessorResponse(success=True, preprocessor_output_type=current_result_type, results=current_outputs)
return PreprocessorResponse(success=True, output_data_type=current_result_type, results=current_outputs)

View file

@ -12,11 +12,11 @@ import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessingDataFormat,
PreprocessingDataType,
Preprocessor,
PreprocessorChain,
PreprocessorInput,
PreprocessorOptions,
PreprocessorResponse,
)
@ -55,7 +55,7 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse:
results = []
@ -68,63 +68,69 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
if document is None:
continue
elif input_type == PreprocessingDataType.binary_document:
document = inp.path_or_content
if inp.preprocessor_input_format is None:
log.error(f"Binary document format is not provided for {inp.preprocessor_input_id}, skipping it")
document = inp.data_element_path_or_content
if inp.data_element_format is None:
log.error(f"Binary document format is not provided for {inp.data_element_id}, skipping it")
continue
if inp.preprocessor_input_format != PreprocessingDataFormat.pdf:
if inp.data_element_format != PreprocessingDataFormat.pdf:
log.error(
f"Unsupported binary document type {inp.preprocessor_input_format} for {inp.preprocessor_input_id}, skipping it"
f"Unsupported binary document type {inp.data_element_format} for {inp.data_element_id}, skipping it"
)
continue
elif input_type == PreprocessingDataType.raw_text_document:
document = interleaved_content_as_str(inp.path_or_content)
document = interleaved_content_as_str(inp.data_element_path_or_content)
else:
log.error(f"Unexpected preprocessor input type: {inp.preprocessor_input_type}")
log.error(f"Unexpected preprocessor input type: {input_type}")
continue
if inp.preprocessor_input_format == PreprocessingDataFormat.pdf:
if inp.data_element_format == PreprocessingDataFormat.pdf:
document = parse_pdf(document)
results.append(document)
new_result = PreprocessingDataElement(
data_element_id=inp.data_element_id,
data_element_type=PreprocessingDataType.raw_text_document,
data_element_format=PreprocessingDataFormat.txt,
data_element_path_or_content=document,
)
results.append(new_result)
return PreprocessorResponse(
success=True, preprocessor_output_type=PreprocessingDataType.raw_text_document, results=results
success=True, output_data_type=PreprocessingDataType.raw_text_document, results=results
)
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
@staticmethod
async def _resolve_input_type(preprocessor_input: PreprocessorInput) -> PreprocessingDataType:
if preprocessor_input.preprocessor_input_type is not None:
return preprocessor_input.preprocessor_input_type
def _resolve_input_type(preprocessor_input: PreprocessingDataElement) -> PreprocessingDataType:
if preprocessor_input.data_element_type is not None:
return preprocessor_input.data_element_type
if isinstance(preprocessor_input.path_or_content, URL):
if isinstance(preprocessor_input.data_element_path_or_content, URL):
return PreprocessingDataType.document_uri
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.path_or_content):
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.data_element_path_or_content):
return PreprocessingDataType.document_uri
if preprocessor_input.preprocessor_input_format == PreprocessingDataFormat.pdf:
if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf:
return PreprocessingDataType.binary_document
return PreprocessingDataType.raw_text_document
@staticmethod
async def _fetch_document(preprocessor_input: PreprocessorInput) -> str | None:
if isinstance(preprocessor_input.path_or_content, str):
url = preprocessor_input.path_or_content
async def _fetch_document(preprocessor_input: PreprocessingDataElement) -> str | None:
if isinstance(preprocessor_input.data_element_path_or_content, str):
url = preprocessor_input.data_element_path_or_content
if not InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(url):
log.error(f"Unexpected URL: {url}")
return None
elif isinstance(preprocessor_input.path_or_content, URL):
url = preprocessor_input.path_or_content.uri
elif isinstance(preprocessor_input.data_element_path_or_content, URL):
url = preprocessor_input.data_element_path_or_content.uri
else:
log.error(
f"Unexpected type {type(preprocessor_input.path_or_content)} for input {preprocessor_input.path_or_content}, skipping this input."
f"Unexpected type {type(preprocessor_input.data_element_path_or_content)} for input {preprocessor_input.data_element_path_or_content}, skipping this input."
)
return None
@ -134,4 +140,4 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
async with httpx.AsyncClient() as client:
r = await client.get(url)
return r.content if preprocessor_input.preprocessor_input_format == PreprocessingDataFormat.pdf else r.text
return r.content if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf else r.text

View file

@ -12,10 +12,11 @@ from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessingDataFormat,
PreprocessingDataType,
Preprocessor,
PreprocessorChain,
PreprocessorInput,
PreprocessorOptions,
PreprocessorResponse,
)
@ -51,38 +52,51 @@ class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse:
results = []
for inp in preprocessor_inputs:
if isinstance(inp.path_or_content, str):
url = inp.path_or_content
elif isinstance(inp.path_or_content, URL):
url = inp.path_or_content.uri
if isinstance(inp.data_element_path_or_content, str):
url = inp.data_element_path_or_content
elif isinstance(inp.data_element_path_or_content, URL):
url = inp.data_element_path_or_content.uri
else:
log.error(
f"Unexpected type {type(inp.path_or_content)} for input {inp.path_or_content}, skipping this input."
f"Unexpected type {type(inp.data_element_path_or_content)} for input {inp.data_element_path_or_content}, skipping this input."
)
continue
converted_document = self.converter.convert(url).document
if self.config.chunk:
result = self.chunker.chunk(converted_document)
results.extend([Chunk(content=chunk.text, metadata=chunk.meta) for chunk in result])
for i, chunk in enumerate(result):
raw_chunk = Chunk(content=chunk.text, metadata=chunk.meta)
chunk_data_element = PreprocessingDataElement(
data_element_id=f"{inp.data_element_id}_chunk_{i}",
data_element_type=PreprocessingDataType.chunks,
data_element_format=PreprocessingDataFormat.txt,
data_element_path_or_content=raw_chunk,
)
results.append(chunk_data_element)
else:
result = converted_document.export_to_markdown()
result = PreprocessingDataElement(
data_element_id=inp.data_element_id,
data_element_type=PreprocessingDataType.raw_text_document,
data_element_format=PreprocessingDataFormat.txt,
data_element_path_or_content=converted_document.export_to_markdown(),
)
results.append(result)
preprocessor_output_type = (
output_data_type = (
PreprocessingDataType.chunks if self.config.chunk else PreprocessingDataType.raw_text_document
)
return PreprocessorResponse(success=True, preprocessor_output_type=preprocessor_output_type, results=results)
return PreprocessorResponse(success=True, output_data_type=output_data_type, results=results)
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)

View file

@ -11,10 +11,11 @@ from llama_models.llama3.api import Tokenizer
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessingDataFormat,
PreprocessingDataType,
Preprocessor,
PreprocessorChain,
PreprocessorInput,
PreprocessorOptions,
PreprocessorResponse,
)
@ -49,7 +50,7 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
async def preprocess(
self,
preprocessor_id: str,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
options: Optional[PreprocessorOptions] = None,
) -> PreprocessorResponse:
chunks = []
@ -58,16 +59,23 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
for inp in preprocessor_inputs:
new_chunks = self.make_overlapped_chunks(
inp.preprocessor_input_id, inp.path_or_content, window_len, overlap_len
inp.data_element_id, inp.data_element_path_or_content, window_len, overlap_len
)
chunks.extend(new_chunks)
for i, chunk in enumerate(new_chunks):
new_chunk_data_element = PreprocessingDataElement(
data_element_id=f"{inp.data_element_id}_chunk_{i}",
data_element_type=PreprocessingDataType.chunks,
data_element_format=PreprocessingDataFormat.txt,
data_element_path_or_content=chunk,
)
chunks.append(new_chunk_data_element)
return PreprocessorResponse(success=True, preprocessor_output_type=PreprocessingDataType.chunks, results=chunks)
return PreprocessorResponse(success=True, output_data_type=PreprocessingDataType.chunks, results=chunks)
async def chain_preprocess(
self,
preprocessors: PreprocessorChain,
preprocessor_inputs: List[PreprocessorInput],
preprocessor_inputs: List[PreprocessingDataElement],
) -> PreprocessorResponse:
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)

View file

@ -20,11 +20,11 @@ from llama_stack.apis.common.content_types import (
from llama_stack.apis.inference import Inference
from llama_stack.apis.preprocessing import (
Preprocessing,
PreprocessingDataElement,
PreprocessingDataFormat,
PreprocessingDataType,
PreprocessorChain,
PreprocessorChainElement,
PreprocessorInput,
)
from llama_stack.apis.tools import (
RAGDocument,
@ -81,10 +81,6 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
preprocessor_chain: Optional[PreprocessorChain] = None,
) -> None:
preprocessor_inputs = [self._rag_document_to_preprocessor_input(d) for d in documents]
preprocessor_chain = [
PreprocessorChainElement(preprocessor_id="builtin::basic"),
PreprocessorChainElement(preprocessor_id="builtin::chunking"),
]
preprocessor_response = await self.preprocessing_api.chain_preprocess(
preprocessors=preprocessor_chain or self.DEFAULT_PREPROCESSING_CHAIN,
preprocessor_inputs=preprocessor_inputs,
@ -94,9 +90,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
log.error("Preprocessor chain returned an error")
return
if preprocessor_response.preprocessor_output_type != PreprocessingDataType.chunks:
if preprocessor_response.output_data_type != PreprocessingDataType.chunks:
log.error(
f"Preprocessor chain returned {preprocessor_response.preprocessor_output_type} instead of {PreprocessingDataType.chunks}"
f"Preprocessor chain returned {preprocessor_response.output_data_type} instead of {PreprocessingDataType.chunks}"
)
return
@ -105,8 +101,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
log.error("No chunks returned by the preprocessor chain")
return
actual_chunks = [chunk.data_element_path_or_content for chunk in chunks]
await self.vector_io_api.insert_chunks(
chunks=chunks,
chunks=actual_chunks,
vector_db_id=vector_db_id,
)
@ -220,14 +217,14 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
)
@staticmethod
def _rag_document_to_preprocessor_input(document: RAGDocument) -> PreprocessorInput:
def _rag_document_to_preprocessor_input(document: RAGDocument) -> PreprocessingDataElement:
if document.mime_type == "application/pdf":
preprocessor_input_format = PreprocessingDataFormat.pdf
data_element_format = PreprocessingDataFormat.pdf
else:
preprocessor_input_format = None
data_element_format = None
return PreprocessorInput(
preprocessor_input_id=document.document_id,
preprocessor_input_format=preprocessor_input_format,
path_or_content=document.content,
return PreprocessingDataElement(
data_element_id=document.document_id,
data_element_format=data_element_format,
data_element_path_or_content=document.content,
)