mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-02 07:00:01 +00:00
Fixed multiple bugs.
This commit is contained in:
parent
6cbc298edb
commit
f10a412898
7 changed files with 102 additions and 78 deletions
|
|
@ -12,11 +12,11 @@ import httpx
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataElement,
|
||||
PreprocessingDataFormat,
|
||||
PreprocessingDataType,
|
||||
Preprocessor,
|
||||
PreprocessorChain,
|
||||
PreprocessorInput,
|
||||
PreprocessorOptions,
|
||||
PreprocessorResponse,
|
||||
)
|
||||
|
|
@ -55,7 +55,7 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
options: Optional[PreprocessorOptions] = None,
|
||||
) -> PreprocessorResponse:
|
||||
results = []
|
||||
|
|
@ -68,63 +68,69 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
if document is None:
|
||||
continue
|
||||
elif input_type == PreprocessingDataType.binary_document:
|
||||
document = inp.path_or_content
|
||||
if inp.preprocessor_input_format is None:
|
||||
log.error(f"Binary document format is not provided for {inp.preprocessor_input_id}, skipping it")
|
||||
document = inp.data_element_path_or_content
|
||||
if inp.data_element_format is None:
|
||||
log.error(f"Binary document format is not provided for {inp.data_element_id}, skipping it")
|
||||
continue
|
||||
if inp.preprocessor_input_format != PreprocessingDataFormat.pdf:
|
||||
if inp.data_element_format != PreprocessingDataFormat.pdf:
|
||||
log.error(
|
||||
f"Unsupported binary document type {inp.preprocessor_input_format} for {inp.preprocessor_input_id}, skipping it"
|
||||
f"Unsupported binary document type {inp.data_element_format} for {inp.data_element_id}, skipping it"
|
||||
)
|
||||
continue
|
||||
elif input_type == PreprocessingDataType.raw_text_document:
|
||||
document = interleaved_content_as_str(inp.path_or_content)
|
||||
document = interleaved_content_as_str(inp.data_element_path_or_content)
|
||||
else:
|
||||
log.error(f"Unexpected preprocessor input type: {inp.preprocessor_input_type}")
|
||||
log.error(f"Unexpected preprocessor input type: {input_type}")
|
||||
continue
|
||||
|
||||
if inp.preprocessor_input_format == PreprocessingDataFormat.pdf:
|
||||
if inp.data_element_format == PreprocessingDataFormat.pdf:
|
||||
document = parse_pdf(document)
|
||||
|
||||
results.append(document)
|
||||
new_result = PreprocessingDataElement(
|
||||
data_element_id=inp.data_element_id,
|
||||
data_element_type=PreprocessingDataType.raw_text_document,
|
||||
data_element_format=PreprocessingDataFormat.txt,
|
||||
data_element_path_or_content=document,
|
||||
)
|
||||
results.append(new_result)
|
||||
|
||||
return PreprocessorResponse(
|
||||
success=True, preprocessor_output_type=PreprocessingDataType.raw_text_document, results=results
|
||||
success=True, output_data_type=PreprocessingDataType.raw_text_document, results=results
|
||||
)
|
||||
|
||||
async def chain_preprocess(
|
||||
self,
|
||||
preprocessors: PreprocessorChain,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
) -> PreprocessorResponse:
|
||||
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
|
||||
|
||||
@staticmethod
|
||||
async def _resolve_input_type(preprocessor_input: PreprocessorInput) -> PreprocessingDataType:
|
||||
if preprocessor_input.preprocessor_input_type is not None:
|
||||
return preprocessor_input.preprocessor_input_type
|
||||
def _resolve_input_type(preprocessor_input: PreprocessingDataElement) -> PreprocessingDataType:
|
||||
if preprocessor_input.data_element_type is not None:
|
||||
return preprocessor_input.data_element_type
|
||||
|
||||
if isinstance(preprocessor_input.path_or_content, URL):
|
||||
if isinstance(preprocessor_input.data_element_path_or_content, URL):
|
||||
return PreprocessingDataType.document_uri
|
||||
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.path_or_content):
|
||||
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.data_element_path_or_content):
|
||||
return PreprocessingDataType.document_uri
|
||||
if preprocessor_input.preprocessor_input_format == PreprocessingDataFormat.pdf:
|
||||
if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf:
|
||||
return PreprocessingDataType.binary_document
|
||||
|
||||
return PreprocessingDataType.raw_text_document
|
||||
|
||||
@staticmethod
|
||||
async def _fetch_document(preprocessor_input: PreprocessorInput) -> str | None:
|
||||
if isinstance(preprocessor_input.path_or_content, str):
|
||||
url = preprocessor_input.path_or_content
|
||||
async def _fetch_document(preprocessor_input: PreprocessingDataElement) -> str | None:
|
||||
if isinstance(preprocessor_input.data_element_path_or_content, str):
|
||||
url = preprocessor_input.data_element_path_or_content
|
||||
if not InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(url):
|
||||
log.error(f"Unexpected URL: {url}")
|
||||
return None
|
||||
elif isinstance(preprocessor_input.path_or_content, URL):
|
||||
url = preprocessor_input.path_or_content.uri
|
||||
elif isinstance(preprocessor_input.data_element_path_or_content, URL):
|
||||
url = preprocessor_input.data_element_path_or_content.uri
|
||||
else:
|
||||
log.error(
|
||||
f"Unexpected type {type(preprocessor_input.path_or_content)} for input {preprocessor_input.path_or_content}, skipping this input."
|
||||
f"Unexpected type {type(preprocessor_input.data_element_path_or_content)} for input {preprocessor_input.data_element_path_or_content}, skipping this input."
|
||||
)
|
||||
return None
|
||||
|
||||
|
|
@ -134,4 +140,4 @@ class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(url)
|
||||
|
||||
return r.content if preprocessor_input.preprocessor_input_format == PreprocessingDataFormat.pdf else r.text
|
||||
return r.content if preprocessor_input.data_element_format == PreprocessingDataFormat.pdf else r.text
|
||||
|
|
|
|||
|
|
@ -12,10 +12,11 @@ from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataElement,
|
||||
PreprocessingDataFormat,
|
||||
PreprocessingDataType,
|
||||
Preprocessor,
|
||||
PreprocessorChain,
|
||||
PreprocessorInput,
|
||||
PreprocessorOptions,
|
||||
PreprocessorResponse,
|
||||
)
|
||||
|
|
@ -51,38 +52,51 @@ class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate
|
|||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
options: Optional[PreprocessorOptions] = None,
|
||||
) -> PreprocessorResponse:
|
||||
results = []
|
||||
|
||||
for inp in preprocessor_inputs:
|
||||
if isinstance(inp.path_or_content, str):
|
||||
url = inp.path_or_content
|
||||
elif isinstance(inp.path_or_content, URL):
|
||||
url = inp.path_or_content.uri
|
||||
if isinstance(inp.data_element_path_or_content, str):
|
||||
url = inp.data_element_path_or_content
|
||||
elif isinstance(inp.data_element_path_or_content, URL):
|
||||
url = inp.data_element_path_or_content.uri
|
||||
else:
|
||||
log.error(
|
||||
f"Unexpected type {type(inp.path_or_content)} for input {inp.path_or_content}, skipping this input."
|
||||
f"Unexpected type {type(inp.data_element_path_or_content)} for input {inp.data_element_path_or_content}, skipping this input."
|
||||
)
|
||||
continue
|
||||
|
||||
converted_document = self.converter.convert(url).document
|
||||
if self.config.chunk:
|
||||
result = self.chunker.chunk(converted_document)
|
||||
results.extend([Chunk(content=chunk.text, metadata=chunk.meta) for chunk in result])
|
||||
for i, chunk in enumerate(result):
|
||||
raw_chunk = Chunk(content=chunk.text, metadata=chunk.meta)
|
||||
chunk_data_element = PreprocessingDataElement(
|
||||
data_element_id=f"{inp.data_element_id}_chunk_{i}",
|
||||
data_element_type=PreprocessingDataType.chunks,
|
||||
data_element_format=PreprocessingDataFormat.txt,
|
||||
data_element_path_or_content=raw_chunk,
|
||||
)
|
||||
results.append(chunk_data_element)
|
||||
else:
|
||||
result = converted_document.export_to_markdown()
|
||||
result = PreprocessingDataElement(
|
||||
data_element_id=inp.data_element_id,
|
||||
data_element_type=PreprocessingDataType.raw_text_document,
|
||||
data_element_format=PreprocessingDataFormat.txt,
|
||||
data_element_path_or_content=converted_document.export_to_markdown(),
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
preprocessor_output_type = (
|
||||
output_data_type = (
|
||||
PreprocessingDataType.chunks if self.config.chunk else PreprocessingDataType.raw_text_document
|
||||
)
|
||||
return PreprocessorResponse(success=True, preprocessor_output_type=preprocessor_output_type, results=results)
|
||||
return PreprocessorResponse(success=True, output_data_type=output_data_type, results=results)
|
||||
|
||||
async def chain_preprocess(
|
||||
self,
|
||||
preprocessors: PreprocessorChain,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
) -> PreprocessorResponse:
|
||||
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
|
||||
|
|
|
|||
|
|
@ -11,10 +11,11 @@ from llama_models.llama3.api import Tokenizer
|
|||
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataElement,
|
||||
PreprocessingDataFormat,
|
||||
PreprocessingDataType,
|
||||
Preprocessor,
|
||||
PreprocessorChain,
|
||||
PreprocessorInput,
|
||||
PreprocessorOptions,
|
||||
PreprocessorResponse,
|
||||
)
|
||||
|
|
@ -49,7 +50,7 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
options: Optional[PreprocessorOptions] = None,
|
||||
) -> PreprocessorResponse:
|
||||
chunks = []
|
||||
|
|
@ -58,16 +59,23 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
|
||||
for inp in preprocessor_inputs:
|
||||
new_chunks = self.make_overlapped_chunks(
|
||||
inp.preprocessor_input_id, inp.path_or_content, window_len, overlap_len
|
||||
inp.data_element_id, inp.data_element_path_or_content, window_len, overlap_len
|
||||
)
|
||||
chunks.extend(new_chunks)
|
||||
for i, chunk in enumerate(new_chunks):
|
||||
new_chunk_data_element = PreprocessingDataElement(
|
||||
data_element_id=f"{inp.data_element_id}_chunk_{i}",
|
||||
data_element_type=PreprocessingDataType.chunks,
|
||||
data_element_format=PreprocessingDataFormat.txt,
|
||||
data_element_path_or_content=chunk,
|
||||
)
|
||||
chunks.append(new_chunk_data_element)
|
||||
|
||||
return PreprocessorResponse(success=True, preprocessor_output_type=PreprocessingDataType.chunks, results=chunks)
|
||||
return PreprocessorResponse(success=True, output_data_type=PreprocessingDataType.chunks, results=chunks)
|
||||
|
||||
async def chain_preprocess(
|
||||
self,
|
||||
preprocessors: PreprocessorChain,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
) -> PreprocessorResponse:
|
||||
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
|
||||
|
||||
|
|
|
|||
|
|
@ -20,11 +20,11 @@ from llama_stack.apis.common.content_types import (
|
|||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataElement,
|
||||
PreprocessingDataFormat,
|
||||
PreprocessingDataType,
|
||||
PreprocessorChain,
|
||||
PreprocessorChainElement,
|
||||
PreprocessorInput,
|
||||
)
|
||||
from llama_stack.apis.tools import (
|
||||
RAGDocument,
|
||||
|
|
@ -81,10 +81,6 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
preprocessor_chain: Optional[PreprocessorChain] = None,
|
||||
) -> None:
|
||||
preprocessor_inputs = [self._rag_document_to_preprocessor_input(d) for d in documents]
|
||||
preprocessor_chain = [
|
||||
PreprocessorChainElement(preprocessor_id="builtin::basic"),
|
||||
PreprocessorChainElement(preprocessor_id="builtin::chunking"),
|
||||
]
|
||||
preprocessor_response = await self.preprocessing_api.chain_preprocess(
|
||||
preprocessors=preprocessor_chain or self.DEFAULT_PREPROCESSING_CHAIN,
|
||||
preprocessor_inputs=preprocessor_inputs,
|
||||
|
|
@ -94,9 +90,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
log.error("Preprocessor chain returned an error")
|
||||
return
|
||||
|
||||
if preprocessor_response.preprocessor_output_type != PreprocessingDataType.chunks:
|
||||
if preprocessor_response.output_data_type != PreprocessingDataType.chunks:
|
||||
log.error(
|
||||
f"Preprocessor chain returned {preprocessor_response.preprocessor_output_type} instead of {PreprocessingDataType.chunks}"
|
||||
f"Preprocessor chain returned {preprocessor_response.output_data_type} instead of {PreprocessingDataType.chunks}"
|
||||
)
|
||||
return
|
||||
|
||||
|
|
@ -105,8 +101,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
log.error("No chunks returned by the preprocessor chain")
|
||||
return
|
||||
|
||||
actual_chunks = [chunk.data_element_path_or_content for chunk in chunks]
|
||||
await self.vector_io_api.insert_chunks(
|
||||
chunks=chunks,
|
||||
chunks=actual_chunks,
|
||||
vector_db_id=vector_db_id,
|
||||
)
|
||||
|
||||
|
|
@ -220,14 +217,14 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
)
|
||||
|
||||
@staticmethod
|
||||
def _rag_document_to_preprocessor_input(document: RAGDocument) -> PreprocessorInput:
|
||||
def _rag_document_to_preprocessor_input(document: RAGDocument) -> PreprocessingDataElement:
|
||||
if document.mime_type == "application/pdf":
|
||||
preprocessor_input_format = PreprocessingDataFormat.pdf
|
||||
data_element_format = PreprocessingDataFormat.pdf
|
||||
else:
|
||||
preprocessor_input_format = None
|
||||
data_element_format = None
|
||||
|
||||
return PreprocessorInput(
|
||||
preprocessor_input_id=document.document_id,
|
||||
preprocessor_input_format=preprocessor_input_format,
|
||||
path_or_content=document.content,
|
||||
return PreprocessingDataElement(
|
||||
data_element_id=document.document_id,
|
||||
data_element_format=data_element_format,
|
||||
data_element_path_or_content=document.content,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue