mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 09:33:54 +00:00
Fixed multiple bugs.
This commit is contained in:
parent
6cbc298edb
commit
f10a412898
7 changed files with 102 additions and 78 deletions
|
|
@ -11,10 +11,11 @@ from llama_models.llama3.api import Tokenizer
|
|||
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataElement,
|
||||
PreprocessingDataFormat,
|
||||
PreprocessingDataType,
|
||||
Preprocessor,
|
||||
PreprocessorChain,
|
||||
PreprocessorInput,
|
||||
PreprocessorOptions,
|
||||
PreprocessorResponse,
|
||||
)
|
||||
|
|
@ -49,7 +50,7 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
options: Optional[PreprocessorOptions] = None,
|
||||
) -> PreprocessorResponse:
|
||||
chunks = []
|
||||
|
|
@ -58,16 +59,23 @@ class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
|||
|
||||
for inp in preprocessor_inputs:
|
||||
new_chunks = self.make_overlapped_chunks(
|
||||
inp.preprocessor_input_id, inp.path_or_content, window_len, overlap_len
|
||||
inp.data_element_id, inp.data_element_path_or_content, window_len, overlap_len
|
||||
)
|
||||
chunks.extend(new_chunks)
|
||||
for i, chunk in enumerate(new_chunks):
|
||||
new_chunk_data_element = PreprocessingDataElement(
|
||||
data_element_id=f"{inp.data_element_id}_chunk_{i}",
|
||||
data_element_type=PreprocessingDataType.chunks,
|
||||
data_element_format=PreprocessingDataFormat.txt,
|
||||
data_element_path_or_content=chunk,
|
||||
)
|
||||
chunks.append(new_chunk_data_element)
|
||||
|
||||
return PreprocessorResponse(success=True, preprocessor_output_type=PreprocessingDataType.chunks, results=chunks)
|
||||
return PreprocessorResponse(success=True, output_data_type=PreprocessingDataType.chunks, results=chunks)
|
||||
|
||||
async def chain_preprocess(
|
||||
self,
|
||||
preprocessors: PreprocessorChain,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
preprocessor_inputs: List[PreprocessingDataElement],
|
||||
) -> PreprocessorResponse:
|
||||
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue