mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
# Fix for Issue #3797 ## Problem Vector store search failed with Pydantic ValidationError when chunk metadata contained list-type values. **Error:** ``` ValidationError: 3 validation errors for VectorStoreSearchResponse attributes.tags.str: Input should be a valid string attributes.tags.float: Input should be a valid number attributes.tags.bool: Input should be a valid boolean ``` **Root Cause:** - `Chunk.metadata` accepts `dict[str, Any]` (any type allowed) - `VectorStoreSearchResponse.attributes` requires `dict[str, str | float | bool]` (primitives only) - Direct assignment at line 641 caused validation failure for non-primitive types ## Solution Added utility function to filter metadata to primitive types before creating search response. ## Impact **Fixed:** - Vector search works with list metadata (e.g., `tags: ["transformers", "gpu"]`) - Lists become searchable as comma-separated strings - No ValidationError on search responses **Preserved:** - Full metadata still available in `VectorStoreContent.metadata` - No API schema changes - Backward compatible with existing primitive metadata **Affected:** All vector store providers using `OpenAIVectorStoreMixin`: FAISS, Chroma, Qdrant, Milvus, Weaviate, PGVector, SQLite-vec ## Testing tests/unit/providers/vector_io/test_vector_utils.py::test_sanitize_metadata_for_attributes --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
This commit is contained in:
parent
1e4e02e622
commit
f18870a221
7 changed files with 207 additions and 8 deletions
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
from llama_stack_api import Chunk, ChunkMetadata
|
||||
from llama_stack_api import Chunk, ChunkMetadata, VectorStoreFileObject
|
||||
|
||||
# This test is a unit test for the chunk_utils.py helpers. This should only contain
|
||||
# tests which are specific to this file. More general (API-level) tests should be placed in
|
||||
|
|
@ -78,3 +78,77 @@ def test_chunk_serialization():
|
|||
serialized_chunk = chunk.model_dump()
|
||||
assert serialized_chunk["chunk_id"] == "test-chunk-id"
|
||||
assert "chunk_id" in serialized_chunk
|
||||
|
||||
|
||||
def test_vector_store_file_object_attributes_validation():
|
||||
"""Test VectorStoreFileObject validates and sanitizes attributes at input boundary."""
|
||||
# Test with metadata containing lists, nested dicts, and primitives
|
||||
from llama_stack_api.vector_io import VectorStoreChunkingStrategyAuto
|
||||
|
||||
file_obj = VectorStoreFileObject(
|
||||
id="file-123",
|
||||
attributes={
|
||||
"tags": ["transformers", "h100-compatible", "region:us"], # List -> string
|
||||
"model_name": "granite-3.3-8b", # String preserved
|
||||
"score": 0.95, # Float preserved
|
||||
"active": True, # Bool preserved
|
||||
"count": 42, # Int -> float
|
||||
"nested": {"key": "value"}, # Dict filtered out
|
||||
},
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
created_at=1234567890,
|
||||
status="completed",
|
||||
vector_store_id="vs-123",
|
||||
)
|
||||
|
||||
# Lists converted to comma-separated strings
|
||||
assert file_obj.attributes["tags"] == "transformers, h100-compatible, region:us"
|
||||
# Primitives preserved
|
||||
assert file_obj.attributes["model_name"] == "granite-3.3-8b"
|
||||
assert file_obj.attributes["score"] == 0.95
|
||||
assert file_obj.attributes["active"] is True
|
||||
assert file_obj.attributes["count"] == 42.0 # int -> float
|
||||
# Complex types filtered out
|
||||
assert "nested" not in file_obj.attributes
|
||||
|
||||
|
||||
def test_vector_store_file_object_attributes_constraints():
|
||||
"""Test VectorStoreFileObject enforces OpenAPI constraints on attributes."""
|
||||
from llama_stack_api.vector_io import VectorStoreChunkingStrategyAuto
|
||||
|
||||
# Test max 16 properties
|
||||
many_attrs = {f"key{i}": f"value{i}" for i in range(20)}
|
||||
file_obj = VectorStoreFileObject(
|
||||
id="file-123",
|
||||
attributes=many_attrs,
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
created_at=1234567890,
|
||||
status="completed",
|
||||
vector_store_id="vs-123",
|
||||
)
|
||||
assert len(file_obj.attributes) == 16 # Max 16 properties
|
||||
|
||||
# Test max 64 char keys are filtered
|
||||
long_key_attrs = {"a" * 65: "value", "valid_key": "value"}
|
||||
file_obj = VectorStoreFileObject(
|
||||
id="file-124",
|
||||
attributes=long_key_attrs,
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
created_at=1234567890,
|
||||
status="completed",
|
||||
vector_store_id="vs-123",
|
||||
)
|
||||
assert "a" * 65 not in file_obj.attributes
|
||||
assert "valid_key" in file_obj.attributes
|
||||
|
||||
# Test max 512 char string values are truncated
|
||||
long_value_attrs = {"key": "x" * 600}
|
||||
file_obj = VectorStoreFileObject(
|
||||
id="file-125",
|
||||
attributes=long_value_attrs,
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
created_at=1234567890,
|
||||
status="completed",
|
||||
vector_store_id="vs-123",
|
||||
)
|
||||
assert len(file_obj.attributes["key"]) == 512
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue