This commit is contained in:
Xi Yan 2025-03-15 14:48:26 -07:00
parent 9b38ae9323
commit f262bfd061
10 changed files with 107 additions and 319 deletions

View file

@ -8,9 +8,9 @@ import time
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
InterleavedContentItem,
URL,
)
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import DatasetPurpose, DataSource
@ -94,9 +94,7 @@ class VectorIORouter(VectorIO):
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
) -> None:
logger.debug(
f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}"
)
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
await self.routing_table.register_vector_db(
vector_db_id,
embedding_model,
@ -114,9 +112,7 @@ class VectorIORouter(VectorIO):
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(
vector_db_id, chunks, ttl_seconds
)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
async def query_chunks(
self,
@ -125,9 +121,7 @@ class VectorIORouter(VectorIO):
params: Optional[Dict[str, Any]] = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(
vector_db_id, query, params
)
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
class InferenceRouter(Inference):
@ -164,9 +158,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.register_model: {model_id=} {provider_model_id=} {provider_id=} {metadata=} {model_type=}",
)
await self.routing_table.register_model(
model_id, provider_model_id, provider_id, metadata, model_type
)
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
def _construct_metrics(
self,
@ -220,16 +212,11 @@ class InferenceRouter(Inference):
total_tokens: int,
model: Model,
) -> List[MetricInResponse]:
metrics = self._construct_metrics(
prompt_tokens, completion_tokens, total_tokens, model
)
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry:
for metric in metrics:
await self.telemetry.log_event(metric)
return [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in metrics
]
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def _count_tokens(
self,
@ -254,9 +241,7 @@ class InferenceRouter(Inference):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
logger.debug(
f"InferenceRouter.chat_completion: {model_id=}, {stream=}, {messages=}, {tools=}, {tool_config=}, {response_format=}",
)
@ -266,19 +251,12 @@ class InferenceRouter(Inference):
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.embedding:
raise ValueError(
f"Model '{model_id}' is an embedding model and does not support chat completions"
)
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
if tool_config:
if tool_choice and tool_choice != tool_config.tool_choice:
raise ValueError("tool_choice and tool_config.tool_choice must match")
if (
tool_prompt_format
and tool_prompt_format != tool_config.tool_prompt_format
):
raise ValueError(
"tool_prompt_format and tool_config.tool_prompt_format must match"
)
if tool_prompt_format and tool_prompt_format != tool_config.tool_prompt_format:
raise ValueError("tool_prompt_format and tool_config.tool_prompt_format must match")
else:
params = {}
if tool_choice:
@ -296,14 +274,9 @@ class InferenceRouter(Inference):
pass
else:
# verify tool_choice is one of the tools
tool_names = [
t.tool_name if isinstance(t.tool_name, str) else t.tool_name.value
for t in tools
]
tool_names = [t.tool_name if isinstance(t.tool_name, str) else t.tool_name.value for t in tools]
if tool_config.tool_choice not in tool_names:
raise ValueError(
f"Tool choice {tool_config.tool_choice} is not one of the tools: {tool_names}"
)
raise ValueError(f"Tool choice {tool_config.tool_choice} is not one of the tools: {tool_names}")
params = dict(
model_id=model_id,
@ -318,25 +291,17 @@ class InferenceRouter(Inference):
tool_config=tool_config,
)
provider = self.routing_table.get_provider_impl(model_id)
prompt_tokens = await self._count_tokens(
messages, tool_config.tool_prompt_format
)
prompt_tokens = await self._count_tokens(messages, tool_config.tool_prompt_format)
if stream:
async def stream_generator():
completion_text = ""
async for chunk in await provider.chat_completion(**params):
if (
chunk.event.event_type
== ChatCompletionResponseEventType.progress
):
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
if chunk.event.delta.type == "text":
completion_text += chunk.event.delta.text
if (
chunk.event.event_type
== ChatCompletionResponseEventType.complete
):
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
completion_tokens = await self._count_tokens(
[
CompletionMessage(
@ -353,11 +318,7 @@ class InferenceRouter(Inference):
total_tokens,
model,
)
chunk.metrics = (
metrics
if chunk.metrics is None
else chunk.metrics + metrics
)
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
yield chunk
return stream_generator()
@ -374,9 +335,7 @@ class InferenceRouter(Inference):
total_tokens,
model,
)
response.metrics = (
metrics if response.metrics is None else response.metrics + metrics
)
response.metrics = metrics if response.metrics is None else response.metrics + metrics
return response
async def completion(
@ -397,9 +356,7 @@ class InferenceRouter(Inference):
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.embedding:
raise ValueError(
f"Model '{model_id}' is an embedding model and does not support chat completions"
)
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
provider = self.routing_table.get_provider_impl(model_id)
params = dict(
model_id=model_id,
@ -419,11 +376,7 @@ class InferenceRouter(Inference):
async for chunk in await provider.completion(**params):
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if (
hasattr(chunk, "stop_reason")
and chunk.stop_reason
and self.telemetry
):
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
completion_tokens = await self._count_tokens(completion_text)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
metrics = await self._compute_and_log_token_usage(
@ -432,11 +385,7 @@ class InferenceRouter(Inference):
total_tokens,
model,
)
chunk.metrics = (
metrics
if chunk.metrics is None
else chunk.metrics + metrics
)
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
yield chunk
return stream_generator()
@ -450,9 +399,7 @@ class InferenceRouter(Inference):
total_tokens,
model,
)
response.metrics = (
metrics if response.metrics is None else response.metrics + metrics
)
response.metrics = metrics if response.metrics is None else response.metrics + metrics
return response
async def embeddings(
@ -468,9 +415,7 @@ class InferenceRouter(Inference):
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.llm:
raise ValueError(
f"Model '{model_id}' is an LLM model and does not support embeddings"
)
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
return await self.routing_table.get_provider_impl(model_id).embeddings(
model_id=model_id,
contents=contents,
@ -504,9 +449,7 @@ class SafetyRouter(Safety):
params: Optional[Dict[str, Any]] = None,
) -> Shield:
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(
shield_id, provider_shield_id, provider_id, params
)
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
async def run_shield(
self,
@ -603,9 +546,7 @@ class ScoringRouter(Scoring):
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
res = {}
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(
fn_identifier
).score_batch(
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
dataset_id=dataset_id,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
@ -623,15 +564,11 @@ class ScoringRouter(Scoring):
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse:
logger.debug(
f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions"
)
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
res = {}
# look up and map each scoring function to its provider impl
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(
fn_identifier
).score(
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
input_rows=input_rows,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
@ -674,9 +611,7 @@ class EvalRouter(Eval):
scoring_functions: List[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
logger.debug(
f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows"
)
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
benchmark_id=benchmark_id,
input_rows=input_rows,
@ -690,9 +625,7 @@ class EvalRouter(Eval):
job_id: str,
) -> Optional[JobStatus]:
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
return await self.routing_table.get_provider_impl(benchmark_id).job_status(
benchmark_id, job_id
)
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
async def job_cancel(
self,
@ -746,9 +679,9 @@ class ToolRuntimeRouter(ToolRuntime):
logger.debug(
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
)
return await self.routing_table.get_provider_impl(
"insert_into_memory"
).insert(documents, vector_db_id, chunk_size_in_tokens)
return await self.routing_table.get_provider_impl("insert_into_memory").insert(
documents, vector_db_id, chunk_size_in_tokens
)
def __init__(
self,
@ -781,6 +714,4 @@ class ToolRuntimeRouter(ToolRuntime):
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(
tool_group_id, mcp_endpoint
)
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)

View file

@ -105,9 +105,7 @@ class CommonRoutingTableImpl(RoutingTable):
self.dist_registry = dist_registry
async def initialize(self) -> None:
async def add_objects(
objs: List[RoutableObjectWithProvider], provider_id: str, cls
) -> None:
async def add_objects(objs: List[RoutableObjectWithProvider], provider_id: str, cls) -> None:
for obj in objs:
if cls is None:
obj.provider_id = provider_id
@ -142,9 +140,7 @@ class CommonRoutingTableImpl(RoutingTable):
for p in self.impls_by_provider_id.values():
await p.shutdown()
def get_provider_impl(
self, routing_key: str, provider_id: Optional[str] = None
) -> Any:
def get_provider_impl(self, routing_key: str, provider_id: Optional[str] = None) -> Any:
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
@ -182,9 +178,7 @@ class CommonRoutingTableImpl(RoutingTable):
raise ValueError(f"Provider not found for `{routing_key}`")
async def get_object_by_identifier(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
async def get_object_by_identifier(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
@ -194,13 +188,9 @@ class CommonRoutingTableImpl(RoutingTable):
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
await self.dist_registry.delete(obj.type, obj.identifier)
await unregister_object_from_provider(
obj, self.impls_by_provider_id[obj.provider_id]
)
await unregister_object_from_provider(obj, self.impls_by_provider_id[obj.provider_id])
async def register_object(
self, obj: RoutableObjectWithProvider
) -> RoutableObjectWithProvider:
async def register_object(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider:
# if provider_id is not specified, pick an arbitrary one from existing entries
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
@ -255,9 +245,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
if model_type is None:
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError(
"Embedding model must have an embedding dimension in its metadata"
)
raise ValueError("Embedding model must have an embedding dimension in its metadata")
model = Model(
identifier=model_id,
provider_resource_id=provider_model_id,
@ -277,9 +265,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> ListShieldsResponse:
return ListShieldsResponse(
data=await self.get_all_with_type(ResourceType.shield.value)
)
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
async def get_shield(self, identifier: str) -> Optional[Shield]:
return await self.get_object_by_identifier("shield", identifier)
@ -338,18 +324,14 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}."
)
else:
raise ValueError(
"No provider available. Please configure a vector_io provider."
)
raise ValueError("No provider available. Please configure a vector_io provider.")
model = await self.get_object_by_identifier("model", embedding_model)
if model is None:
raise ValueError(f"Model {embedding_model} not found")
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
if "embedding_dimension" not in model.metadata:
raise ValueError(
f"Model {embedding_model} does not have an embedding dimension"
)
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
vector_db_data = {
"identifier": vector_db_id,
"type": ResourceType.vector_db.value,
@ -371,9 +353,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> ListDatasetsResponse:
return ListDatasetsResponse(
data=await self.get_all_with_type(ResourceType.dataset.value)
)
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
async def get_dataset(self, dataset_id: str) -> Optional[Dataset]:
return await self.get_object_by_identifier("dataset", dataset_id)
@ -426,9 +406,7 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
return ListScoringFunctionsResponse(
data=await self.get_all_with_type(ResourceType.scoring_function.value)
)
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]:
return await self.get_object_by_identifier("scoring_function", scoring_fn_id)
@ -525,12 +503,8 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
args: Optional[Dict[str, Any]] = None,
) -> None:
tools = []
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(
toolgroup_id, mcp_endpoint
)
tool_host = (
ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
)
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
for tool_def in tool_defs:
tools.append(

View file

@ -230,9 +230,7 @@ def run_evaluation_3():
output_res[scoring_fn] = []
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
progress_text_container.write(
f"Expand to see current processed result ({i + 1} / {len(rows)})"
)
progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})")
results_container.json(eval_res, expanded=2)
progress_bar.progress(1.0, text="Evaluation complete!")

View file

@ -161,9 +161,7 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
new_rows_df = pandas.DataFrame(rows)
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
dataset_impl.df = pandas.concat(
[dataset_impl.df, new_rows_df], ignore_index=True
)
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
url = str(dataset_info.dataset_def.url.uri)
parsed_url = urlparse(url)
@ -178,12 +176,8 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
raise ValueError("Data URL must be a base64-encoded CSV")
csv_buffer = dataset_impl.df.to_csv(index=False)
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
"utf-8"
)
dataset_info.dataset_def.url = URL(
uri=f"data:text/csv;base64,{base64_content}"
)
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode("utf-8")
dataset_info.dataset_def.url = URL(uri=f"data:text/csv;base64,{base64_content}")
else:
raise ValueError(
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."

View file

@ -89,16 +89,10 @@ class MetaReferenceEvalImpl(
dataset_id = task_def.dataset_id
scoring_functions = task_def.scoring_functions
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=(
-1
if benchmark_config.num_examples is None
else benchmark_config.num_examples
),
rows_in_page=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
)
res = await self.evaluate_rows(
benchmark_id=benchmark_id,
@ -124,14 +118,10 @@ class MetaReferenceEvalImpl(
for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [
UserMessage(**x) for x in input_messages if x["role"] == "user"
]
input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
session_create_response = await self.agents_api.create_agent_session(
agent_id, f"session-{i}"
)
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
session_id = session_create_response.session_id
turn_request = dict(
@ -140,12 +130,7 @@ class MetaReferenceEvalImpl(
messages=input_messages,
stream=True,
)
turn_response = [
chunk
async for chunk in await self.agents_api.create_agent_turn(
**turn_request
)
]
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
final_event = turn_response[-1].event.payload
# check if there's a memory retrieval step and extract the context
@ -154,14 +139,10 @@ class MetaReferenceEvalImpl(
if step.step_type == StepType.tool_execution.value:
for tool_response in step.tool_responses:
if tool_response.tool_name == MEMORY_QUERY_TOOL:
memory_rag_context = " ".join(
x.text for x in tool_response.content
)
memory_rag_context = " ".join(x.text for x in tool_response.content)
agent_generation = {}
agent_generation[ColumnName.generated_answer.value] = (
final_event.turn.output_message.content
)
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
if memory_rag_context:
agent_generation[ColumnName.context.value] = memory_rag_context
@ -173,9 +154,7 @@ class MetaReferenceEvalImpl(
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
) -> List[Dict[str, Any]]:
candidate = benchmark_config.eval_candidate
assert (
candidate.sampling_params.max_tokens is not None
), "SamplingParams.max_tokens must be provided"
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
generations = []
for x in tqdm(input_rows):
@ -186,39 +165,21 @@ class MetaReferenceEvalImpl(
content=input_content,
sampling_params=candidate.sampling_params,
)
generations.append(
{
ColumnName.generated_answer.value: response.completion_message.content
}
)
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
elif ColumnName.chat_completion_input.value in x:
chat_completion_input_json = json.loads(
x[ColumnName.chat_completion_input.value]
)
input_messages = [
UserMessage(**x)
for x in chat_completion_input_json
if x["role"] == "user"
]
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
messages = []
if candidate.system_message:
messages.append(candidate.system_message)
messages += [
SystemMessage(**x)
for x in chat_completion_input_json
if x["role"] == "system"
]
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
messages += input_messages
response = await self.inference_api.chat_completion(
model_id=candidate.model,
messages=messages,
sampling_params=candidate.sampling_params,
)
generations.append(
{
ColumnName.generated_answer.value: response.completion_message.content
}
)
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
else:
raise ValueError("Invalid input row")
@ -241,8 +202,7 @@ class MetaReferenceEvalImpl(
# scoring with generated_answer
score_input_rows = [
input_r | generated_r
for input_r, generated_r in zip(input_rows, generations, strict=False)
input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False)
]
if benchmark_config.scoring_params is not None:
@ -251,9 +211,7 @@ class MetaReferenceEvalImpl(
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {
scoring_fn_id: None for scoring_fn_id in scoring_functions
}
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions_dict

View file

@ -17,7 +17,8 @@ import torch
from torch import nn
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from torchtune import modules, training, utils as torchtune_utils
from torchtune import modules, training
from torchtune import utils as torchtune_utils
from torchtune.data import padded_collate_sft
from torchtune.modules.loss import CEWithChunkedOutputLoss
from torchtune.modules.peft import (
@ -88,9 +89,7 @@ class LoraFinetuningSingleDevice:
self.job_uuid = job_uuid
self.training_config = training_config
if not isinstance(algorithm_config, LoraFinetuningConfig):
raise ValueError(
"You need to speicifc LoraFinetuningConfig for LoRA finetuning"
)
raise ValueError("You need to speicifc LoraFinetuningConfig for LoRA finetuning")
self.algorithm_config = algorithm_config
self._device = torchtune_utils.get_device()
self._dtype = training.get_dtype(training_config.dtype, device=self._device)
@ -99,10 +98,7 @@ class LoraFinetuningSingleDevice:
def model_checkpoint_dir(model) -> str:
checkpoint_dir = Path(model_local_dir(model.descriptor()))
paths = [
Path(checkpoint_dir / f"consolidated.{ext}")
for ext in ["pth", "00.pth"]
]
paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]]
if not any(p.exists() for p in paths):
checkpoint_dir = checkpoint_dir / "original"
@ -117,9 +113,7 @@ class LoraFinetuningSingleDevice:
else:
model = resolve_model(self.model_id)
if model is None:
raise ValueError(
f"{self.model_id} not found. Your model id should be in the llama models SKU list"
)
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
self.checkpoint_dir = model_checkpoint_dir(model)
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
@ -191,9 +185,7 @@ class LoraFinetuningSingleDevice:
self._tokenizer = await self._setup_tokenizer()
log.info("Tokenizer is initialized.")
self._optimizer = await self._setup_optimizer(
optimizer_config=self.training_config.optimizer_config
)
self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config)
log.info("Optimizer is initialized.")
self._loss_fn = CEWithChunkedOutputLoss()
@ -221,13 +213,8 @@ class LoraFinetuningSingleDevice:
# by the dataloader and the max_steps_per_epoch param set by the user and is used
# for logging and tracking training state. This should be computed after the dataloader
# has been setup
self._steps_per_epoch = (
len(self._training_dataloader) // self._gradient_accumulation_steps
)
if (
self.max_steps_per_epoch is not None
and self.max_steps_per_epoch < self._steps_per_epoch
):
self._steps_per_epoch = len(self._training_dataloader) // self._gradient_accumulation_steps
if self.max_steps_per_epoch is not None and self.max_steps_per_epoch < self._steps_per_epoch:
self._steps_per_epoch = self.max_steps_per_epoch
self.global_step = self.epochs_run * self._steps_per_epoch
@ -241,9 +228,7 @@ class LoraFinetuningSingleDevice:
log.info("Learning rate scheduler is initialized.")
# Used to ignore labels for loss computation
self.ignore_labels_cache = torch.full(
(self._batch_size, 1), self._loss_fn.ignore_index, device=self._device
)
self.ignore_labels_cache = torch.full((self._batch_size, 1), self._loss_fn.ignore_index, device=self._device)
def _log_memory_stats(self):
# torchtune raises: "Logging memory stats is not supported on CPU devices"; do nothing
@ -284,13 +269,9 @@ class LoraFinetuningSingleDevice:
set_trainable_params(model, self.adapter_params)
if enable_activation_checkpointing:
training.set_activation_checkpointing(
model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
)
training.set_activation_checkpointing(model, auto_wrap_policy={modules.TransformerSelfAttentionLayer})
base_missing, base_unexpected = model.load_state_dict(
base_model_state_dict, strict=False
)
base_missing, base_unexpected = model.load_state_dict(base_model_state_dict, strict=False)
# This is for any adapters that need to be initialized after base weights
# have been loaded (e.g. DoRA).
@ -299,9 +280,7 @@ class LoraFinetuningSingleDevice:
if hasattr(m, "initialize_dora_magnitude"):
m.initialize_dora_magnitude()
if lora_weights_state_dict:
lora_missing, lora_unexpected = model.load_state_dict(
lora_weights_state_dict, strict=False
)
lora_missing, lora_unexpected = model.load_state_dict(lora_weights_state_dict, strict=False)
else:
lora_missing, lora_unexpected = None, None
validate_missing_and_unexpected_for_lora(
@ -315,14 +294,10 @@ class LoraFinetuningSingleDevice:
)
# Validate model adapter params were loaded in with the expected dtype
training.validate_expected_param_dtype(
self.adapter_params.items(), dtype=self._dtype
)
training.validate_expected_param_dtype(self.adapter_params.items(), dtype=self._dtype)
# activation offloading
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(
model, enable_activation_offloading
)
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(model, enable_activation_offloading)
self._log_memory_stats()
@ -458,9 +433,7 @@ class LoraFinetuningSingleDevice:
# Shift labels to compute loss
# equivalent to doing labels[..., 1:] and logits[..., :-1, :]
# But this way we dont need to slice the logits. We just add an ignore index to labels.
labels = torch.hstack(
(labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]])
)
labels = torch.hstack((labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]]))
if not isinstance(logits, list):
labels = labels.reshape(-1)
logits = logits.reshape(-1, logits.size(-1))
@ -489,9 +462,7 @@ class LoraFinetuningSingleDevice:
for curr_epoch in range(self.epochs_run, self.total_epochs):
# Update the sampler to ensure data is correctly shuffled across epochs
# in case shuffle is True
metric_logger = DiskLogger(
log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}/log"
)
metric_logger = DiskLogger(log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}/log")
self._training_sampler.set_epoch(curr_epoch)
loss_to_log = 0.0
@ -499,8 +470,7 @@ class LoraFinetuningSingleDevice:
for idx, batch in enumerate(self._training_dataloader):
if (
self.max_steps_per_epoch is not None
and (idx // self._gradient_accumulation_steps)
== self.max_steps_per_epoch
and (idx // self._gradient_accumulation_steps) == self.max_steps_per_epoch
):
break
@ -508,9 +478,7 @@ class LoraFinetuningSingleDevice:
# Calculate the number of unmasked tokens in the current batch
# and increment the total number of tokens seen in the step
current_num_tokens = (
batch["labels"] != self._loss_fn.ignore_index
).sum()
current_num_tokens = (batch["labels"] != self._loss_fn.ignore_index).sum()
num_tokens += current_num_tokens
# Loss is normalized by default so we multiply by the number of tokens
@ -535,9 +503,7 @@ class LoraFinetuningSingleDevice:
loss_to_log = running_loss.item() / num_tokens
pbar.update(1)
pbar.set_description(
f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}"
)
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
time_per_step = time.perf_counter() - t0
log_dict = {

View file

@ -64,15 +64,11 @@ class BasicScoringImpl(
async def list_scoring_functions(self) -> List[ScoringFn]:
scoring_fn_defs_list = [
fn_def
for impl in self.scoring_fn_id_impls.values()
for fn_def in impl.get_supported_scoring_fn_defs()
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
]
for f in scoring_fn_defs_list:
assert f.identifier.startswith(
"basic"
), "All basic scoring fn must have identifier prefixed with 'basic'! "
assert f.identifier.startswith("basic"), "All basic scoring fn must have identifier prefixed with 'basic'! "
return scoring_fn_defs_list
@ -86,9 +82,7 @@ class BasicScoringImpl(
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
@ -118,12 +112,8 @@ class BasicScoringImpl(
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -122,12 +122,10 @@ class BraintrustScoringImpl(
self.datasets_api = datasets_api
self.braintrust_evaluators = {
entry.identifier: entry.evaluator
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
entry.identifier: entry.evaluator for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
}
self.supported_fn_defs_registry = {
entry.identifier: entry.fn_def
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
entry.identifier: entry.fn_def for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
}
async def initialize(self) -> None: ...
@ -137,16 +135,14 @@ class BraintrustScoringImpl(
async def list_scoring_functions(self) -> List[ScoringFn]:
scoring_fn_defs_list = list(self.supported_fn_defs_registry.values())
for f in scoring_fn_defs_list:
assert f.identifier.startswith(
"braintrust"
), "All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
assert f.identifier.startswith("braintrust"), (
"All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
)
return scoring_fn_defs_list
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None:
raise NotImplementedError(
"Registering scoring function not allowed for braintrust provider"
)
raise NotImplementedError("Registering scoring function not allowed for braintrust provider")
async def set_api_key(self) -> None:
# api key is in the request headers
@ -169,17 +165,13 @@ class BraintrustScoringImpl(
await self.set_api_key()
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)
res = await self.score(
input_rows=all_rows.rows, scoring_functions=scoring_functions
)
res = await self.score(input_rows=all_rows.rows, scoring_functions=scoring_functions)
if save_results_dataset:
# TODO: persist and register dataset on to server for reading
# self.datasets_api.register_dataset()
@ -220,13 +212,8 @@ class BraintrustScoringImpl(
if scoring_fn_id not in self.supported_fn_defs_registry:
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
score_results = [
await self.score_row(input_row, scoring_fn_id)
for input_row in input_rows
]
aggregation_functions = self.supported_fn_defs_registry[
scoring_fn_id
].params.aggregation_functions
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
# override scoring_fn params if provided
if scoring_functions[scoring_fn_id] is not None:

View file

@ -54,9 +54,9 @@ class LlmAsJudgeScoringImpl(
scoring_fn_defs_list = self.llm_as_judge_fn.get_supported_scoring_fn_defs()
for f in self.llm_as_judge_fn.get_supported_scoring_fn_defs():
assert f.identifier.startswith(
"llm-as-judge"
), "All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
assert f.identifier.startswith("llm-as-judge"), (
"All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
)
return scoring_fn_defs_list
@ -70,9 +70,7 @@ class LlmAsJudgeScoringImpl(
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
@ -100,12 +98,8 @@ class LlmAsJudgeScoringImpl(
for scoring_fn_id in scoring_functions.keys():
scoring_fn = self.llm_as_judge_fn
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -104,13 +104,9 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
new_dataset = hf_datasets.Dataset.from_list(rows)
# Concatenate the new rows with existing dataset
updated_dataset = hf_datasets.concatenate_datasets(
[loaded_dataset, new_dataset]
)
updated_dataset = hf_datasets.concatenate_datasets([loaded_dataset, new_dataset])
if dataset_def.metadata.get("path", None):
updated_dataset.push_to_hub(dataset_def.metadata["path"])
else:
raise NotImplementedError(
"Uploading to URL-based datasets is not supported yet"
)
raise NotImplementedError("Uploading to URL-based datasets is not supported yet")