mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
OpenAI compat embeddings API
This commit is contained in:
parent
2603f10f95
commit
f2c2a05f58
20 changed files with 706 additions and 0 deletions
176
docs/_static/llama-stack-spec.html
vendored
176
docs/_static/llama-stack-spec.html
vendored
|
@ -3607,6 +3607,49 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/embeddings": {
|
||||
"post": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "An OpenAIEmbeddingsResponse containing the embeddings.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/OpenAIEmbeddingsResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"Inference"
|
||||
],
|
||||
"description": "Generate OpenAI-compatible embeddings for the given input using the specified model.",
|
||||
"parameters": [],
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/OpenaiEmbeddingsRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/models": {
|
||||
"get": {
|
||||
"responses": {
|
||||
|
@ -11767,6 +11810,139 @@
|
|||
"title": "OpenAICompletionChoice",
|
||||
"description": "A choice from an OpenAI-compatible completion response."
|
||||
},
|
||||
"OpenaiEmbeddingsRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint."
|
||||
},
|
||||
"input": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
],
|
||||
"description": "Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings."
|
||||
},
|
||||
"encoding_format": {
|
||||
"type": "string",
|
||||
"description": "(Optional) The format to return the embeddings in. Can be either \"float\" or \"base64\". Defaults to \"float\"."
|
||||
},
|
||||
"dimensions": {
|
||||
"type": "integer",
|
||||
"description": "(Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models."
|
||||
},
|
||||
"user": {
|
||||
"type": "string",
|
||||
"description": "(Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"model",
|
||||
"input"
|
||||
],
|
||||
"title": "OpenaiEmbeddingsRequest"
|
||||
},
|
||||
"OpenAIEmbeddingData": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"object": {
|
||||
"type": "string",
|
||||
"const": "embedding",
|
||||
"default": "embedding",
|
||||
"description": "The object type, which will be \"embedding\""
|
||||
},
|
||||
"embedding": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"description": "The embedding vector as a list of floats (when encoding_format=\"float\") or as a base64-encoded string (when encoding_format=\"base64\")"
|
||||
},
|
||||
"index": {
|
||||
"type": "integer",
|
||||
"description": "The index of the embedding in the input list"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"object",
|
||||
"embedding",
|
||||
"index"
|
||||
],
|
||||
"title": "OpenAIEmbeddingData",
|
||||
"description": "A single embedding data object from an OpenAI-compatible embeddings response."
|
||||
},
|
||||
"OpenAIEmbeddingUsage": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"prompt_tokens": {
|
||||
"type": "integer",
|
||||
"description": "The number of tokens in the input"
|
||||
},
|
||||
"total_tokens": {
|
||||
"type": "integer",
|
||||
"description": "The total number of tokens used"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"prompt_tokens",
|
||||
"total_tokens"
|
||||
],
|
||||
"title": "OpenAIEmbeddingUsage",
|
||||
"description": "Usage information for an OpenAI-compatible embeddings response."
|
||||
},
|
||||
"OpenAIEmbeddingsResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"object": {
|
||||
"type": "string",
|
||||
"const": "list",
|
||||
"default": "list",
|
||||
"description": "The object type, which will be \"list\""
|
||||
},
|
||||
"data": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/OpenAIEmbeddingData"
|
||||
},
|
||||
"description": "List of embedding data objects"
|
||||
},
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "The model that was used to generate the embeddings"
|
||||
},
|
||||
"usage": {
|
||||
"$ref": "#/components/schemas/OpenAIEmbeddingUsage",
|
||||
"description": "Usage information"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"object",
|
||||
"data",
|
||||
"model",
|
||||
"usage"
|
||||
],
|
||||
"title": "OpenAIEmbeddingsResponse",
|
||||
"description": "Response from an OpenAI-compatible embeddings request."
|
||||
},
|
||||
"OpenAIModel": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
|
144
docs/_static/llama-stack-spec.yaml
vendored
144
docs/_static/llama-stack-spec.yaml
vendored
|
@ -2520,6 +2520,38 @@ paths:
|
|||
schema:
|
||||
$ref: '#/components/schemas/OpenaiCompletionRequest'
|
||||
required: true
|
||||
/v1/openai/v1/embeddings:
|
||||
post:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
An OpenAIEmbeddingsResponse containing the embeddings.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/OpenAIEmbeddingsResponse'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- Inference
|
||||
description: >-
|
||||
Generate OpenAI-compatible embeddings for the given input using the specified
|
||||
model.
|
||||
parameters: []
|
||||
requestBody:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/OpenaiEmbeddingsRequest'
|
||||
required: true
|
||||
/v1/openai/v1/models:
|
||||
get:
|
||||
responses:
|
||||
|
@ -8177,6 +8209,118 @@ components:
|
|||
title: OpenAICompletionChoice
|
||||
description: >-
|
||||
A choice from an OpenAI-compatible completion response.
|
||||
OpenaiEmbeddingsRequest:
|
||||
type: object
|
||||
properties:
|
||||
model:
|
||||
type: string
|
||||
description: >-
|
||||
The identifier of the model to use. The model must be an embedding model
|
||||
registered with Llama Stack and available via the /models endpoint.
|
||||
input:
|
||||
oneOf:
|
||||
- type: string
|
||||
- type: array
|
||||
items:
|
||||
type: string
|
||||
description: >-
|
||||
Input text to embed, encoded as a string or array of strings. To embed
|
||||
multiple inputs in a single request, pass an array of strings.
|
||||
encoding_format:
|
||||
type: string
|
||||
description: >-
|
||||
(Optional) The format to return the embeddings in. Can be either "float"
|
||||
or "base64". Defaults to "float".
|
||||
dimensions:
|
||||
type: integer
|
||||
description: >-
|
||||
(Optional) The number of dimensions the resulting output embeddings should
|
||||
have. Only supported in text-embedding-3 and later models.
|
||||
user:
|
||||
type: string
|
||||
description: >-
|
||||
(Optional) A unique identifier representing your end-user, which can help
|
||||
OpenAI to monitor and detect abuse.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- model
|
||||
- input
|
||||
title: OpenaiEmbeddingsRequest
|
||||
OpenAIEmbeddingData:
|
||||
type: object
|
||||
properties:
|
||||
object:
|
||||
type: string
|
||||
const: embedding
|
||||
default: embedding
|
||||
description: >-
|
||||
The object type, which will be "embedding"
|
||||
embedding:
|
||||
oneOf:
|
||||
- type: array
|
||||
items:
|
||||
type: number
|
||||
- type: string
|
||||
description: >-
|
||||
The embedding vector as a list of floats (when encoding_format="float")
|
||||
or as a base64-encoded string (when encoding_format="base64")
|
||||
index:
|
||||
type: integer
|
||||
description: >-
|
||||
The index of the embedding in the input list
|
||||
additionalProperties: false
|
||||
required:
|
||||
- object
|
||||
- embedding
|
||||
- index
|
||||
title: OpenAIEmbeddingData
|
||||
description: >-
|
||||
A single embedding data object from an OpenAI-compatible embeddings response.
|
||||
OpenAIEmbeddingUsage:
|
||||
type: object
|
||||
properties:
|
||||
prompt_tokens:
|
||||
type: integer
|
||||
description: The number of tokens in the input
|
||||
total_tokens:
|
||||
type: integer
|
||||
description: The total number of tokens used
|
||||
additionalProperties: false
|
||||
required:
|
||||
- prompt_tokens
|
||||
- total_tokens
|
||||
title: OpenAIEmbeddingUsage
|
||||
description: >-
|
||||
Usage information for an OpenAI-compatible embeddings response.
|
||||
OpenAIEmbeddingsResponse:
|
||||
type: object
|
||||
properties:
|
||||
object:
|
||||
type: string
|
||||
const: list
|
||||
default: list
|
||||
description: The object type, which will be "list"
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/OpenAIEmbeddingData'
|
||||
description: List of embedding data objects
|
||||
model:
|
||||
type: string
|
||||
description: >-
|
||||
The model that was used to generate the embeddings
|
||||
usage:
|
||||
$ref: '#/components/schemas/OpenAIEmbeddingUsage'
|
||||
description: Usage information
|
||||
additionalProperties: false
|
||||
required:
|
||||
- object
|
||||
- data
|
||||
- model
|
||||
- usage
|
||||
title: OpenAIEmbeddingsResponse
|
||||
description: >-
|
||||
Response from an OpenAI-compatible embeddings request.
|
||||
OpenAIModel:
|
||||
type: object
|
||||
properties:
|
||||
|
|
|
@ -783,6 +783,48 @@ class OpenAICompletion(BaseModel):
|
|||
object: Literal["text_completion"] = "text_completion"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIEmbeddingData(BaseModel):
|
||||
"""A single embedding data object from an OpenAI-compatible embeddings response.
|
||||
|
||||
:param object: The object type, which will be "embedding"
|
||||
:param embedding: The embedding vector as a list of floats (when encoding_format="float") or as a base64-encoded string (when encoding_format="base64")
|
||||
:param index: The index of the embedding in the input list
|
||||
"""
|
||||
|
||||
object: Literal["embedding"] = "embedding"
|
||||
embedding: list[float] | str
|
||||
index: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIEmbeddingUsage(BaseModel):
|
||||
"""Usage information for an OpenAI-compatible embeddings response.
|
||||
|
||||
:param prompt_tokens: The number of tokens in the input
|
||||
:param total_tokens: The total number of tokens used
|
||||
"""
|
||||
|
||||
prompt_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIEmbeddingsResponse(BaseModel):
|
||||
"""Response from an OpenAI-compatible embeddings request.
|
||||
|
||||
:param object: The object type, which will be "list"
|
||||
:param data: List of embedding data objects
|
||||
:param model: The model that was used to generate the embeddings
|
||||
:param usage: Usage information
|
||||
"""
|
||||
|
||||
object: Literal["list"] = "list"
|
||||
data: list[OpenAIEmbeddingData]
|
||||
model: str
|
||||
usage: OpenAIEmbeddingUsage
|
||||
|
||||
|
||||
class ModelStore(Protocol):
|
||||
async def get_model(self, identifier: str) -> Model: ...
|
||||
|
||||
|
@ -1076,6 +1118,26 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/embeddings", method="POST")
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""Generate OpenAI-compatible embeddings for the given input using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
|
||||
:param input: Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings.
|
||||
:param encoding_format: (Optional) The format to return the embeddings in. Can be either "float" or "base64". Defaults to "float".
|
||||
:param dimensions: (Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
|
||||
:param user: (Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
|
||||
:returns: An OpenAIEmbeddingsResponse containing the embeddings.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class Inference(InferenceProvider):
|
||||
"""Llama Stack Inference API for generating completions, chat completions, and embeddings.
|
||||
|
|
|
@ -45,6 +45,7 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -546,6 +547,34 @@ class InferenceRouter(Inference):
|
|||
await self.store.store_chat_completion(response, messages)
|
||||
return response
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
|
||||
)
|
||||
model_obj = await self.routing_table.get_model(model)
|
||||
if model_obj is None:
|
||||
raise ValueError(f"Model '{model}' not found")
|
||||
if model_obj.model_type != ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is not an embedding model")
|
||||
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
input=input,
|
||||
encoding_format=encoding_format,
|
||||
dimensions=dimensions,
|
||||
user=user,
|
||||
)
|
||||
|
||||
provider = self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
return await provider.openai_embeddings(**params)
|
||||
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
|
|
@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -410,6 +411,16 @@ class VLLMInferenceImpl(
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -22,6 +22,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -197,3 +198,13 @@ class BedrockInferenceAdapter(
|
|||
response_body = json.loads(response.get("body").read())
|
||||
embeddings.append(response_body.get("embedding"))
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -194,3 +195,13 @@ class CerebrasInferenceAdapter(
|
|||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -152,3 +153,13 @@ class DatabricksInferenceAdapter(
|
|||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -37,6 +37,7 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -286,6 +287,16 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -29,6 +29,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -238,6 +239,16 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -32,6 +32,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -370,6 +371,16 @@ class OllamaInferenceAdapter(
|
|||
|
||||
return model
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -14,6 +14,9 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -38,6 +41,7 @@ logger = logging.getLogger(__name__)
|
|||
# | batch_chat_completion | LiteLLMOpenAIMixin |
|
||||
# | openai_completion | AsyncOpenAI |
|
||||
# | openai_chat_completion | AsyncOpenAI |
|
||||
# | openai_embeddings | AsyncOpenAI |
|
||||
#
|
||||
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
def __init__(self, config: OpenAIConfig) -> None:
|
||||
|
@ -171,3 +175,51 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
user=user,
|
||||
)
|
||||
return await self._openai_client.chat.completions.create(**params)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
||||
if model_id.startswith("openai/"):
|
||||
model_id = model_id[len("openai/") :]
|
||||
|
||||
# Prepare parameters for OpenAI embeddings API
|
||||
params = {
|
||||
"model": model_id,
|
||||
"input": input,
|
||||
}
|
||||
|
||||
if encoding_format is not None:
|
||||
params["encoding_format"] = encoding_format
|
||||
if dimensions is not None:
|
||||
params["dimensions"] = dimensions
|
||||
if user is not None:
|
||||
params["user"] = user
|
||||
|
||||
# Call OpenAI embeddings API
|
||||
response = await self._openai_client.embeddings.create(**params)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_data.embedding,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
|
|
@ -19,6 +19,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -210,6 +211,16 @@ class PassthroughInferenceAdapter(Inference):
|
|||
task_type=task_type,
|
||||
)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator
|
|||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingsResponse
|
||||
|
||||
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
|
@ -134,3 +135,13 @@ class RunpodInferenceAdapter(
|
|||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -291,6 +292,16 @@ class _HfAdapter(
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class TGIAdapter(_HfAdapter):
|
||||
async def initialize(self, config: TGIImplConfig) -> None:
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -267,6 +268,16 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -507,6 +508,16 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -260,6 +261,16 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError("embedding is not supported for watsonx")
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -4,7 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import struct
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -15,6 +17,9 @@ from llama_stack.apis.inference import (
|
|||
EmbeddingTaskType,
|
||||
InterleavedContentItem,
|
||||
ModelStore,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
TextTruncation,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
|
@ -43,6 +48,50 @@ class SentenceTransformerEmbeddingMixin:
|
|||
)
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
# Convert input to list format if it's a single string
|
||||
input_list = [input] if isinstance(input, str) else input
|
||||
if not input_list:
|
||||
raise ValueError("Empty list not supported")
|
||||
|
||||
# Get the model and generate embeddings
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
embedding_model = self._load_sentence_transformer_model(model_obj.provider_resource_id)
|
||||
embeddings = embedding_model.encode(input_list, show_progress_bar=False)
|
||||
|
||||
# Convert embeddings to the requested format
|
||||
data = []
|
||||
for i, embedding in enumerate(embeddings):
|
||||
if encoding_format == "base64":
|
||||
# Convert float array to base64 string
|
||||
float_bytes = struct.pack(f"{len(embedding)}f", *embedding)
|
||||
embedding_value = base64.b64encode(float_bytes).decode("ascii")
|
||||
else:
|
||||
# Default to float format
|
||||
embedding_value = embedding.tolist()
|
||||
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_value,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
# Not returning actual token usage
|
||||
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.provider_resource_id,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
|
||||
global EMBEDDING_MODELS
|
||||
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import struct
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
|
@ -35,6 +37,9 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -264,6 +269,52 @@ class LiteLLMOpenAIMixin(
|
|||
embeddings = [data["embedding"] for data in response["data"]]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Convert input to list if it's a string
|
||||
input_list = [input] if isinstance(input, str) else input
|
||||
|
||||
# Call litellm embedding function
|
||||
# litellm.drop_params = True
|
||||
response = litellm.embedding(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
input=input_list,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
dimensions=dimensions,
|
||||
)
|
||||
|
||||
# Convert response to OpenAI format
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response["data"]):
|
||||
# we encode to base64 if the encoding format is base64 in the request
|
||||
if encoding_format == "base64":
|
||||
byte_data = b"".join(struct.pack("f", f) for f in embedding_data["embedding"])
|
||||
embedding = base64.b64encode(byte_data).decode("utf-8")
|
||||
else:
|
||||
embedding = embedding_data["embedding"]
|
||||
|
||||
data.append(OpenAIEmbeddingData(embedding=embedding, index=i))
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response["usage"]["prompt_tokens"],
|
||||
total_tokens=response["usage"]["total_tokens"],
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.provider_resource_id,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue