TGI adapter and some refactoring of other inference adapters

This commit is contained in:
Ashwin Bharambe 2024-09-04 10:51:27 -07:00
parent 6ad7365676
commit f355b9b844
3 changed files with 246 additions and 0 deletions

View file

@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_toolchain.core.datatypes import RemoteProviderConfig
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
from .tgi import TGIInferenceAdapter
impl = TGIInferenceAdapter(config.url)
await impl.initialize()
return impl

View file

@ -0,0 +1,223 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List
import httpx
from huggingface_hub import InferenceClient
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_toolchain.inference.api import * # noqa: F403
SUPPORTED_MODELS = {
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
}
class TGIInferenceAdapter(Inference):
def __init__(self, url: str) -> None:
self.url = url.rstrip("/")
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
self.model = None
async def initialize(self) -> None:
hf_models = {v: k for k, v in SUPPORTED_MODELS.items()}
async with httpx.AsyncClient() as client:
response = await client.get(f"{self.url}/info")
response.raise_for_status()
info = response.json()
if "model_id" not in info:
raise RuntimeError("Missing model_id in model info")
model_id = info["model_id"]
if model_id not in hf_models:
raise RuntimeError(
f"TGI is serving model: {model_id}, use one of the supported models: {','.join(hf_models.keys())}"
)
self.model = hf_models[model_id]
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _convert_messages(self, messages: List[Message]) -> List[Message]:
ret = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
ret.append({"role": role, "content": message.content})
return ret
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
if request.model != self.model:
raise ValueError(
f"Model mismatch, expected: {self.model}, got: {request.model}"
)
options = self.get_chat_options(request)
client = InferenceClient(base_url=self.url)
if not request.stream:
r = client.chat.completions.create(
model=SUPPORTED_MODELS[self.model],
messages=self._convert_messages(request.messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
response = client.chat.completions.create(
model=SUPPORTED_MODELS[self.model],
messages=self._convert_messages(request.messages),
stream=True,
**options,
)
for chunk in response:
if chunk.choices[0].finish_reason:
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content
if text is None:
continue
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -35,6 +35,14 @@ def available_inference_providers() -> List[ProviderSpec]:
module="llama_toolchain.inference.adapters.ollama",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_id="tgi",
pip_packages=["huggingface-hub"],
module="llama_toolchain.inference.adapters.tgi",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(